Dynamical Systems

Yujiang.wang@ncl.ac.uk
Lecture 2 of 5
Terminology recap

• Variable or state
• Differential equation
• Initial condition
• Trajectory
• Parameter
• Steady state
• Transient behaviour
• Perturbation
• Ordinary differential equations (ODE)
• 3 dimensional ODE
Solving for a steady state analytically

\[\frac{dx}{dt} = k*x + c \]
\[\frac{dx}{dt} = 0 \]

\[k*x_{ss} + c = 0 \]
\[k*x_{ss} = -c \]
\[x_{ss} = \frac{-c}{k} \]
Population dynamics

dR/dt = k*R

R: Rabbit population
k: ?
Population dynamics

\[\frac{dR}{dt} = k \cdot R \cdot (1-a) \]

- \(a=0? \)
- \(a=1? \)
- \(0<a<1? \)
- \(a>1? \)
Feedback inhibition

[X] -> Protein X concentration
[Y] -> Protein Y is the dimer of XX

\[
\begin{align*}
\frac{d[X]}{dt} &= -k*X - r*X*X + (g-Y) \\
\frac{d[Y]}{dt} &= r*X*X - l*Y
\end{align*}
\]

k: ?, l: ?
r: ?
g: ?
Neural population model

E -> fractional firing of excitatory neural population
I -> fractional firing of inhibitory neural population

dE/dt = -E + S(a*E - b*I + P)
dI/dt = -I + S(c*E - d*I + Q)

a,b,c,d: connectivity weights
P,Q: baseline input to the populations
S: sigmoid function

Also known as Wilson-Cowan equations
Overview

• What are dynamical systems?
• How to interpret a differential equation
• **How to analyse differential equation systems**
• How to solve differential equation systems
• Stability analysis, multistability
• Oscillatory solutions
• Parameter variations, bifurcations
• Choice of cool stuff: Chaos, turbulence, spatio-temporal systems, slow-fast systems, transients, and more.
Time series 2
An alternative view: Phase space
Phase space with more initial conditions
Phase space with vector field
Vectorfield 101

dX/dt=2*Y-X

dY/dt=-Y+1

Draw phase space and vectorfield between X=[0:3], Y=[0:3]
Example of vector field and trajectory

http://earth.nullschool.net/#current/wind/surface/level/orthographic=-1.68,54.81,2461
Neural population model

E -> fractional firing of excitatory neural population
I -> fractional firing of inhibitory neural population

\[
\begin{align*}
\frac{dE}{dt} &= -E + S(aE - bI + P) \\
\frac{dI}{dt} &= -I + S(cE - dI + Q)
\end{align*}
\]

Also known as Wilson-Cowan equations

a, b, c, d: connectivity weights
P, Q: baseline input to the populations
S: sigmoid function
Phase space with vector field
Phase space with vector field and nullcline
Increase self excitation (parameter a)
Stable focus

Saddle

Stable node
Illustrating fixed point stability
Focus vs. node
Another example system: Feedback inhibition

[X] -> Protein X concentration
[Y] -> Protein Y is the dimer of XX

\[
\begin{align*}
\frac{d[X]}{dt} &= -k*X -r*X*X + (g-Y) \\
\frac{d[Y]}{dt} &= r*X*X - l*Y
\end{align*}
\]

k=0.1: degradation rate of X
l=0.8: degradation rate of Y
r=0.5: dimerisation rate
g=2: production rate of X
Time series
Phase space
Trajectories
Terminology recap

- Phase space/state space
- Vectorfield
- Fixed point (stable/unstable, focus/node)
- Nullcline
- Saddles, separatrix
- Bistability
Plotting phase space, vectorfields, nullclines

Google: pplane matlab

http://math.rice.edu/~dfield/#8.0
Derive nullclines

dX/dt = -k*X - r*X^2 + g - Y

dY/dt = r*X^2 - l*Y