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Structural connectivity in the brain is typically studied by reduc-
ing its observation to a single spatial resolution. However, the
brain possesses a rich architecture organized over multiple scales
linked to one another. We explored the multiscale organiza-
tion of human connectomes using datasets of healthy subjects
reconstructed at five different resolutions. We found that the
structure of the human brain remains self-similar when the res-
olution of observation is progressively decreased by hierarchical
coarse-graining of the anatomical regions. Strikingly, a geomet-
ric network model, where distances are not Euclidean, predicts
the multiscale properties of connectomes, including self-similarity.
The model relies on the application of a geometric renormaliza-
tion protocol which decreases the resolution by coarse-graining
and averaging over short similarity distances. Our results suggest
that simple organizing principles underlie the multiscale architec-
ture of human structural brain networks, where the same con-
nectivity law dictates short- and long-range connections between
different brain regions over many resolutions. The implications
are varied and can be substantial for fundamental debates, such
as whether the brain is working near a critical point, as well as
for applications including advanced tools to simplify the digital
reconstruction and simulation of the brain.
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Extensive study of the topology of the human connectome (1–
3) has revealed characteristic features of complex networks,

including the small-world phenomenon (4–7), high levels of clus-
tering (7), heterogeneous degree distributions (even though not
scale-free) (8, 9), rich-club effect (10), and community structure
(11, 12). These structural features have been typically observed at
specific scales fixed by the resolution of the experimental imag-
ing technique. Only very recently did brain networks began to be
considered simultaneously at multiple resolutions. Notable con-
tributions investigated network scaling effects in human resting-
state functional MRI data (13), introduced techniques for the
reconstruction of multiscale connectomes (14), proposed network
algorithms for multiscale community detection (15, 16), and ana-
lyzed network metrics across parcellation scales (17). However,
other features remain unexplored, and modeling approaches are
still missing. Novel methodological advances are needed to under-
stand the multiscale organization of the human brain and, in
particular, how the different scales are interrelated.

In the context of complex networks, the study of the multiscale
problem (18, 19)—and related concepts like scale invariance
and self-similarity (20)—is built upon the renormalization tech-
nique of statistical physics (21, 22), which successfully explained
the universality of critical behavior in phase transitions (23).
The method allows a systematic investigation of the changes
of a physical system as viewed at different length scales. More
specifically, block-spin renormalization (24) gives a clear pro-

cedure to link the different scales by a transformation that
aggregates components at short distances to define components
at larger distances, eliminating from the system degrees of free-
dom whose scale is smaller than the new component size. These
theories inspired a geometric renormalization (GR) transforma-
tion for real networks that allows one to explore them at different
resolutions (19).

The GR transformation is based on a geometric network
model that positions nodes in a hidden metric space, thereby
defining a map, such that the closer two nodes are in the space,
the more likely is that they are connected (25). The model
explains universal features of real networks—including the
small-world property, heterogeneous degree distributions, and
clustering—as well as fundamental mechanisms—including pref-
erential attachment in growing networks (26) and the emergence
of communities (27, 28)—by assuming the hyperbolic plane as
the natural geometry to embed hierarchical topologies and,
hence, complex networks (29). Hyperbolic maps of real networks
can be obtained by using statistical inference techniques (30,
31) and have been observed to sustain efficient navigation (30).
These result are also valid for connectomes of different species
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(32), implying that distances between brain regions in the hyper-
bolic plane offer a more accurate interpretation of the structure
of connectomes as compared to results based on physical dis-
tances in Euclidean space. This is in line with recent findings that
the brain’s Euclidean embedding has a major, but not definitive,
role in shaping neuronal network architecture (33–38). Finally,
maps of real networks provide effective distances to apply GR.
The transformation unfolds real scale-free networks—the Inter-
net, word adjacencies in Darwin’s On the Origin of Species, the
human metabolic network, and more—into a shell of layers
that distinguishes the coexisting scales and their interactions,
revealing self-similarity over multiple scales as a ubiquitous
symmetry (19).

In this work, we reconstructed multiscale human (MH) con-
nectomes at five anatomical resolutions for a total of 84 healthy
subjects in two different datasets. First, we measured network
properties of the connectomes at each scale and found that their
structure remained self-similar as the resolution of observation
was progressively reduced. Second, we obtained the hyperbolic
map of the highest-resolution layer of each connectome and
applied GR to obtain a multiscale unfolding. At each scale,
we found a striking congruency between the empirical observa-
tions and the predictions given by the model. Third, we explored
the impact of impairing the geometric properties of connec-
tomes on self-similarity and navigation. Altogether, our results
indicate that the same rules explain the formation of short-
range and long-range connections in the brain—within the range
of length scales covered by the datasets—and support GR as
a valid archetypical model for the multiscale structure of the
human brain.

Empirical Evidence for the Self-Similarity of the MH Connectome.
We used two different datasets with a total of 84 healthy human
subjects. The first dataset (University of Lausanne; UL) con-
tains diffusion spectrum MRI data of 40 subjects scanned at
UL. Neural fibers connecting pairs of regions were tracked by
following directions of maximum diffusion. The second dataset
(Human Connectome Project; HCP) (39), used to cross-validate
the results, contains the multiscale connectomes of 44 healthy
subjects of the test–retest subsample. The fiber bundles were esti-
mated by employing the intravoxel fiber Orientation Distribution
Functions (fODFs) computed by a constrained spherical decon-
volution technique (40). All connectomes in the two datasets
were reconstructed by using deterministic streamline tractogra-
phy, and the multiscale parcellation of the cortex was obtained
with the approach proposed in ref. 14. Details on the acquisition
and processing of the datasets, and justification for the conve-
nience of using deterministic algorithms for our purposes, are
described in Materials and Methods. Even if the UL dataset is
significantly sparser than HCP (SI Appendix, Tables S1 and S2),
similar results were found for both cohorts.

For each subject, we reconstructed a multiscale connectome
organized in five layers with different anatomical resolutions,
following ref. 14; details can be found in Materials and Meth-
ods. Nodes in each layer correspond to parcels in the cortical
and subcortical regions (the brainstem is excluded), and connec-
tions denote the presence of fibers between them. The multiscale
parcelation is anatomically hierarchical and was obtained by
iterating a coarse-graining operation starting at layer l = 0 to
produce a subsequent layer with a reduced resolution. The tech-
nique consists of grouping sets of two or three neighboring brain
regions to build a new brain partition and recomputing connec-
tion densities between each pair of the resulting parcels. The
layers contain roughly 1,014; 462; 233; 128; and 82 nodes (these
numbers slightly fluctuate across subjects; SI Appendix, Tables
S1 and S2) and are labeled l = 0, 1, 2, 3, 4, respectively. The hier-
archical anatomical coarse-graining determines the sequence of
length scales characterizing the multiscale connectomes. As the

resolution decreases, each node corresponds to a larger par-
cel of the brain, and the average fiber length of connections,
computed from streamline tractography, also increases, since
short-distance connections are absorbed inside coarse-grained
parcels (Fig. 1).

For each layer l of each subject, we measured the fol-
lowing properties: complementary cumulative degree distri-
bution P

(l)
c (k

(l)
res ), degree–degree correlations using the nor-

malized average degree of nearest neighbors k̄
(l)
nn,n(k

(l)
res ) =

k̄
(l)
nn (k

(l)
res )〈k (l)〉/〈(k (l))2〉, degree-dependent clustering coeffi-

cient c̄(l)(k
(l)
res ), rich-club coefficient r (l)(k

(l)
res ) (41), average

degree, and average clustering coefficient. These quantities were
calculated as a function of the rescaled degree k

(l)
res = k (l)/〈k (l)〉

to account for the variation of the average degree across layers.
Fig. 2 shows the results for a typical subject in the UL dataset
(see SI Appendix, Figs. S4–S11 and S21–S30 for all connectomes
in the UL and HCP datasets, respectively). The overlap of the
curves in Fig. 2 A–D denotes self-similarity across layers for the
degree distribution, degree–degree correlations, clustering, and
rich-club effect (note that Fig. 2D omits the values correspond-
ing to high-degree thresholds to avoid cluttering the plot, since
the corresponding subgraphs are typically small and, thus, very
noisy; see SI Appendix, Fig. S7 for the complete curves).

Fig. 2 B and C, Insets display the average clustering coeffi-
cient, 〈c〉, and the average degree, 〈k〉, across the five layers
of the MH connectome. We see that 〈c〉 increases, first mildly
then more pronouncedly, as the resolution decreases (i.e., as l
goes from zero to four), which explains the shift observed in the
corresponding c̄(l)(k

(l)
res ) curves in Fig. 2B. On the other hand,

〈k〉 first increases slightly—compatible with an almost constant
average degree—and then decreases more markedly in layers 3
and 4. Values for the SE of these average values are given in SI
Appendix, Tables S1 and S2 for the UL and the HCP connec-
tomes, respectively. The last two layers in the MH connectomes
are more prone to finite-size effects due to their smaller number
of nodes and are also affected by a higher variability in the sur-
face area of the anatomical regions, which may cause biases in
streamline determination (SI Appendix, Figs. S1 and S2).

Finally, we also inferred the community partition using the
Louvain method (42). The modularity Q

(l)
emp of the detected par-

titions is shown in Fig. 2E, along with the adjusted mutual
information AMI

(l)
emp between the community partition detected

Fig. 1. Average fiber length of connections in MH connectomes at different
resolutions for UL subject no. 10 and HCP subject no. 15 (see SI Appendix,
Figs. S3 and S20 for all subjects). Error bars indicate the two-SE interval
around the mean.

Zheng et al. PNAS | August 18, 2020 | vol. 117 | no. 33 | 20245

D
ow

nl
oa

de
d 

at
 U

ni
ve

rs
ity

 o
f N

ew
ca

st
le

 o
n 

S
ep

te
m

be
r 

1,
 2

02
0 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922248117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922248117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922248117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922248117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922248117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922248117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922248117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922248117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922248117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922248117/-/DCSupplemental


A B C D E

F G H I J

Fig. 2. Self-similarity of the MH connectome across different resolutions. (A–E) Results for UL subject no. 10. (A) Complementary cumulative degree dis-
tribution P(l)

c (k(l)
res). (B) Degree-dependent clustering coefficient c̄(l)(k(l)

res). (B, Inset) Average clustering coefficient 〈c〉 across layers. (C) Normalized average
degree of nearest neighbors k̄(l)

nn,n(k(l)
res). (C, Inset) Average degree 〈k〉 across layers. In B and C, Insets, error bars indicate the two-SE interval around the mean;

note that some of the bars are smaller than symbols. (D) Rich-club coefficient r(l)(k(l)
res) for low and intermediate values of the rescaled threshold degrees.

(E) Community structure. Q(l) is the modularity in layer l, Q(l,0) is the modularity that the community structure of layer l induces in layer 0, and AMI(l,0) is
the adjusted mutual information between the latter and the community partition directly detected in layer 0; Materials and Methods. The subscript emp
indicates the empirical MH connectome. (F–J) Variability of topological properties in the UL dataset. Blue symbols correspond to the properties of layer 0
for each of the 40 subjects. The red lines correspond to UL subject no. 10. The black dashed line represents the average value across the 40 subjects in the
cohort. Degrees have been rescaled by the average degree of the corresponding layer k(l)

res = k(l)/〈k(l)〉.

in layer 0 and the community partition induced in layer 0 by that
in layer l—with modularity Q

(l,0)
emp (Materials and Methods). The

overlap between communities at different resolutions remains
important, even if the modularity is slightly weakened, especially
in the last two layers, where the finite-size effects are stronger
due to their reduced size.

Altogether, our results strongly support the self-similarity of
each MH connectome in the datasets. Moreover, we found the
connectomes of different subjects in each dataset to be simi-
lar to one another. Fig. 2 F–J shows the properties measured
in layer 0 of every subject in the UL dataset with the subject
used in Fig. 2 A–E highlighted. Information about the other lay-
ers in the UL dataset can be found in SI Appendix, Figs. S10
and S11, and SI Appendix, Figs. S29 and S30 provide results for
all layers of the HCP dataset. The homogeneity across subjects
within a dataset is further supported by the results of statistical
tests that evaluate the congruency of each connectome at l = 0
with the cohort average. For each connectome, we compared
the degree of the nodes, the sum of the degree of their neigh-
bors, and the number of triangles to which each node participates
against the corresponding cohort averages. This cohort average
was obtained by computing, for each brain region, the mean and
SD σ of these three properties over all subjects. SI Appendix,
Tables S3 and S4 provide the values for the Pearson corre-
lation coefficient ρ, the χ2 test (χ2 =

∑N
i (

valuereal−valuegroup
σgroup

)2)
normalized by the number of nodes, and the score ζ quantify-
ing the fraction of nodes with values outside the 2σ CI around
the mean.

Geometric Renormalizaton of the Human Connectome. We now
show that the observed scale invariance of the real MH connec-
tomes can be explained by a geometric network model, where
distances are not Euclidean, that includes a renormalization
protocol (19).

Geometric Description of Connectomes. Connectome maps (32)
are based on the S1 network model (25). Each brain region i

is characterized by two random variables: a hidden degree κi ,
that quantifies its popularity and sets its scale of connectivity and
an angular position θi in a one-dimensional sphere (circle); or
similarity space, aggregating all other attributes that modulate
the likelihood of connections including, but not limited to, the
Euclidean physiological three-dimensional (3D) embedding of
the brain.

Connections are pairwise in the S1 model, and their probability
takes the form of the gravity law

pij =
1

1 +λβij
=

1

1 +
(

dij
µκiκj

)
β
. [1]

Hence, the likelihood of a link between two nodes increases
with the product of their hidden degrees and decreases with
their angular distance (therefore increasing with their similarity).
Parameter µ controls the average degree of synthetic connec-
tomes produced by the model, while β controls the level of
clustering, and so the coupling strength between the topology
of the network and its underlying geometry (clustering is the
topological signature of the triangle inequality in the underlying
metric space). The angular distance ∆θij =π− |π− |θi − θj‖,
combined with the radius R of the similarity subspace (we set
R =N /2π to fix the density of nodes on the circle to one),
gives the similarity distance dij =R∆θij . By assigning hidden
variables to the nodes—the hidden degrees are typically drawn
from some heterogeneous distribution—the model produces
networks which are simultaneously small-world, highly clustered,
with heterogenous degree distributions and rich clubs. One of
the important features of Eq. 1 is that it encodes simultane-
ously the likelihood of long- and short-range connections at all
distances, which therefore need not be described by different
mechanisms. Another relevant property of the model is that
the expected degree of a node i is proportional to its hidden
degree, κi .

Similarity captures affinity between brain regions so that when
two brain regions are close in similarity space, they are more

20246 | www.pnas.org/cgi/doi/10.1073/pnas.1922248117 Zheng et al.

D
ow

nl
oa

de
d 

at
 U

ni
ve

rs
ity

 o
f N

ew
ca

st
le

 o
n 

S
ep

te
m

be
r 

1,
 2

02
0 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922248117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922248117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922248117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922248117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922248117/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1922248117


N
EU

RO
SC

IE
N

CE
PH

YS
IC

S

similar and are more likely to form connections. One of the con-
sequences is that groups of nodes that are close in similarity
space tend to be more strongly interconnected, as compared with
the rest of the network. Hence, the inferred angular positions of
brain regions in the similarity subspace offer information about
the community structure of the analyzed connectomes and cor-
relate with neuroanatomical information, with nodes belonging
to the same neuroanatomical region strongly concentrated in a
narrow angular section of the similarity space (32). Notice that
Euclidean distance is certainly an important factor, but not the
only one determining similarity distance, that is also inversely
related to, but different from, homophilic attraction measures
used in generative models of the brain (37). See SI Appendix,
Fig. S38 for the comparison with different similarity index.

The S1 model has an isomorphic purely geometric
formulation—the H2 model (29)—in which the popularity and
similarity dimensions are combined into a single distance in the
hyperbolic plane by transforming the hidden degrees into radial
coordinates. The popularity and similarity coordinates of the
nodes in a real connectome—i.e., its hyperbolic map—can be
obtained by using statistical inference to find the coordinates
that maximize the likelihood that our geometric model repro-
duces the structure of the real connectome (30, 43). We used
the tool Mercator (31) to infer hyperbolic connectomes maps;
see Materials and Methods for more details.

The embedding of UL subject no. 10 is shown on Fig. 3
(results for HCP subject no. 15 are in SI Appendix, Fig. S31).
Fig. 3A displays the map at l = 0 with nodes colored accord-
ing to the 82 coarse-grained regions in layer l = 4. The left
and right hemispheres, indicated by the red and green frames
on the edge of the disk, are naturally separated, and nodes
belonging to the same brain region appear clustered in nearby
angular positions. This is consistent with previous results (32,
44). To test the accuracy of the embedding, we used the set of
inferred coordinates {κi , θi} and parameters β and µ to gen-
erate an ensemble of 100 synthetic networks using Eq. 1. We
compared topological properties of this ensemble with those
measured on the real connectome. Specifically, Fig. 3 B–D shows
the results for the complementary cumulative degree distribu-
tion Pc(k), the degree-dependent clustering coefficient c̄(k), the
average degree of nearest neighbors k̄nn,n(k), and the rich-club
coefficient r(k). In Fig. 3 E–G, we show the good agreement
between local properties in the real connectomes—degree, sum
of degrees of neighbors, and number of triangles to which
a node participates—and in the synthetic ensemble. We also
report the results of the statistical tests described in the pre-
vious section (i.e., ρ, χ2, and ζ); see SI Appendix, Tables S5
and S6 for all subjects. The results confirm that the generated
networks reproduce the topological properties with remarkable
precision.

Fig. 3. Hyperbolic connectome map of UL subject no. 10. (A) Embedding of l = 0 in the hyperbolic disk. Nodes are colored according to the 82 coarse-
grained regions in layer l = 4. Only links with connection probability greater than 0.5 are shown. The size of each node is proportional to the logarithm
of its degree, and the font size of the names of brain regions is proportional to the logarithm of the number of nodes in the regions (only regions with
more than 10 nodes are shown). Red and green frames indicate left and right hemispheres, respectively. A, anterior; I, inferior; L, lateral; M, middle; R,
rostral; S, superior; gs, gyrus. (B–D) Network properties of l = 0 compared to the model predictions, complementary cumulative degree distribution (B),
degree-dependent clustering coefficient (C), average degree of nearest neighbors (D), and rich-club coefficient (D, Inset). Red symbols correspond to subject
no. 10, and the black dashed lines correspond to the group average across the 40 subjects in the UL dataset. The blue lines correspond to the average value
obtained from 100 synthetic networks generated with the S1 model using the coordinates and parameters inferred by Mercator (31), and the orange regions
show the 2σ CI around the expected value. (E–G) Comparison of the predictions of the S1 model (average over the ensemble of 100 synthetic networks) with
the actual values for degrees (E), number of triangles attached to each node (F), and sum of degrees of neighbors (G). Error bars show the 2σ CI around the
average values. Statistical tests for the goodness of fit—Pearson correlation coefficient ρ, χ2 test normalized by the number of nodes N, and ζ score—are
reported in each subfigure.
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GR Transformation. Given that connectomes are well described
by the S1 model, similarity distances in connectome maps at
l = 0 allow the application of renormalization techniques for
a systematic investigation of their properties at different res-
olutions. Given a connectome map, the GR transformation
introduced in ref. 19 produces a self-similar, scaled-down replica
with a reduced resolution by capturing longer-range connections
between coarse-grained groups of nodes, such that the average
length of connections in similarity space, which determines the
length scale, grows (19).

After obtaining the embedding of layer l = 0, the GR transfor-
mation works by defining nonoverlapping blocks of consecutive
nodes of size r = 2 along the similarity circle that are coarse-
grained to form supernodes. The supernodes are assigned an
angular coordinate within the regions in the similarity subspace
defined by the nodes in the block, so that the original angular
ordering is preserved. Second, two supernodes i and j are con-
nected in the new layer if and only if at least one node in block i is
connected to at least one node in block j in the original layer. The
resulting layer has a geometric description that is maximally con-
gruent with the S1 model if the hidden variables of supernodes
in the new map, κ′ and θ′, are

κ′=

[
r∑

j=1

(κj )
β

]1/β
and θ′=

[∑r
j=1(θjκj )

β∑r
j=1(κj )β

]1/β
, [2]

where the sums are over the nodes that are merged into each
supernode. Global parameters are rescaled as µ′=µ/r , β′=β,
and R′=R/r . The transformation is stable and keeps the orig-
inal distribution of degrees and the ordering of nodes in the
similarity space, and the probability of connection between two
supernodes i and j is still given by Eq. 1. As a consequence, the
S1 model is a renormalizable model and is self-similar under GR.
The procedure can be iterated to produce a multiscale unfold-
ing of a connectome in a sequence of self-similar, scaled-down
replicas.

Multiscale GR Shell of the Human Connectome. We applied the
GR transformation to the connectome map at layer 0 of each
subject. The transformation was applied iteratively four times
to generate a five-layer multiscale shell of each connectome.
Since layer 0 contains roughly 1,014 nodes, each subsequent layer
generated by GR has 507; 254; 127; and 64 nodes, to be com-
pared with 462; 233; 128; and 82 nodes in the layers of the MH
connectomes.

We also embedded each layer of the MH connectomes sep-
arately. The collection of maps from the individual embedding
of each MH layer and the GR shell derived from layer l = 0
of one subject is displayed in Fig. 4A. The nodes are colored
according to the 82 neuroanatomical regions represented by the
nodes in layer l = 4 of the MH maps. Remarkably, nodes corre-
sponding to the same region remain angularly close in all MH
maps. To support this claim, for each supernode in layer l + 1,
we measured the average angular separation of its subnodes in
layer l , defined as ∆θ

(l+1)
s = 2

Ns (Ns−1)

∑
i,j∈s ∆θ

(l)
ij , where Ns

is the number of nodes coarse-grained into supernode s . Val-
ues close to 0 indicate that coarse-grained regions have similar
angular positions. As shown in Fig. 4 B and C, the distribu-
tion p(∆θs) is similar in MH and GR maps (see SI Appendix,
Fig. S32 for HCP subject no. 15). All distributions are peaked
around low average angular separation in both cases, even if
MH distributions can reach large values. Angular separation of
subnodes within supernodes also remain small, on average, when
we compare the angular distribution of subnodes in any layer
with that of the corresponding supernodes in layer l = 4 (Fig. 4
B, Inset). The preservation of low average angular separation
within coarse-grained anatomical regions—that is, the preser-

vation of similarity in MH maps—indicates that the inferred
coordinates are consistent across scales and encode significant
information on the hierarchical anatomical structure of the con-
nectomes, even if each layer was embedded independently. This
feature is well reproduced by the GR flow, as expected, given
that supernodes are produced by coarse-graining neighboring
nodes in the similarity space and therefore preserve the original
ordering.

We compared topological properties of the MH connectome
shown in Fig. 2 with those computed for each layer in the cor-
responding GR shell; see Fig. 4 D–H and SI Appendix, Figs.
S4–S9 and S22–S28 for the remaining subjects. Strikingly, we
observed a high congruency between the empirical curves of the
different topological properties—degree distributions, degree–
degree correlations, clustering spectrum, rich club, and average
degree and clustering—and those predicted by GR at every scale
(note that the perfect overlap for l = 0 is trivial). The GR model
is a renormalizable model (19) and, therefore, unfolds a net-
work into a shell of self-similar, scaled-down versions of the
original network. Hence, the good agreement between empiri-
cal and model curves gives a further proof of the self-similarity
of the empirical data. In the case of the rich-club effect, the GR
prediction is even able to reproduce the whole curves despite
finite-size effects (SI Appendix, Figs. S7 and S22–S27). To see
if the model is also able to reproduce the progressive increase
in fiber length of empirical connections as the resolution of
observation is decreased (Fig. 1), we calculated the average fiber
length of links in layer 0 that remain outside supernodes at each
upper layer (Fig. 4 G, Inset; see SI Appendix, Figs. S12 and
S33 for the remaining subjects). The two curves are in excellent
agreement, meaning that the range of length scales covered in
the real multiscale connectomes and in the model are consis-
tent. Additionally, Fig. 4H shows the modularities Q

(l)
GR, Q(l,0)

GR

and the adjusted mutual information AMI
(l,0)
GR in the GR shell

(Materials and Methods). The community structure is preserved
to a great extent in the flow with values for the adjusted mutual
information similar to those measured in the MH connectome.
We also report the overlap between topological communities
in the MH connectomes at each layer and the GR flow mea-
sured in their projection over layer 0 (AMI

(emp,GR)
0 ; comparison

via layer 0 avoids the problem of comparing networks with
slightly different numbers of nodes). Here, again, the community
structure of real connectomes is also well approximated by the
GR shell.

Finally, Fig. 5 shows the empirical connection probabilities
as a function of Euclidean distance (3D separation between
region centers) in the MH connectome and as a function of the
effective hyperbolic distance in the GR shell (see SI Appendix,
Figs. S13 and S14 for all UL subjects and SI Appendix, Figs. S34–
S36 for the HCP dataset). Finite-size effects aside, the curves
show scale invariance in Euclidean and in hyperbolic spaces,
as expected, given the self-similarity of the topological prop-
erties shown in Fig. 2 A–D. In Euclidean space, the curves
overlap only when distances are rescaled by specific values
obtained ad hoc (caption of Fig. 5). Interestingly, the curves
in the GR shell overlap naturally due to the renormalizability
of the geometric network model on which the GR technique
is based.

Despite the scaling of the probability of connection in Fig. 5A,
Euclidean distances alone do not contain enough information to
explain the connectivity properties of the MH connectome (45).
In fact, networks generated by a purely geometric model based
on Euclidean distances would have the small-world property if
and only if pij ∼ x−βij , with β ∈ (d , 2d) and d the dimension of
the underlying space (46). However, these networks would be
homogeneous in their node-degree distribution, in contrast to
the observed heterogeneity in human connectomes. To take it
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Fig. 4. Hyperbolic maps of the MH connectome and the GR flow. (A) The bottom layer l = 0 corresponds to the hyperbolic map of the highest-resolution
connectome for subject no. 10. (A, Left) The upper maps are obtained by embedding independently each layer in the MH connectome. The different colors
are given to the nodes according to the 82 coarse-grained regions defined in layer l = 4. (A, Right) In the GR flow, the maps are obtained by renormalizing
layer l = 0. A supernode in layer l> 0 inherits the color of its subnode in layer l− 1 positioned at its left in the similarity space (similar results are obtained
if the color of the node on the right was chosen, or if the color was chosen at random between the two subnodes). For visualization purposes, we only
represent links if their probability of connection according to Eq. 1 is larger than 0.5. (B and C). Distribution p(∆θs) of the average angular separation
between subnodes of coarse-grained supernodes from one layer to the next in MH and GR, respectively. (B, Inset) The distribution p(∆θs) of subnodes
in layer l that correspond to a same supernode in layer 4 of MH. (D–H) Comparison of topological properties in the empirical MH connectome of UL
subject no. 10 (symbols) and GR predictions (lines). (D) Complementary cumulative degree distribution P(l)

c (k(l)
res). (E) Degree-dependent clustering coefficient

c̄(l)(k(l)
res). (E, Inset) Average clustering coefficient 〈c〉 across layers. (F) Degree–degree correlations k̄(l)

nn,n(k(l)
res). (F, Inset) Average degree 〈k〉 across layers.

(G) Rich-club coefficient r(l)(k(l)
res) for low and intermediate values of the rescaled threshold degrees. (G, Inset) Average fiber length f̄ (l,0) in layer 0 of links

outside supernodes in layer l, where supernodes are defined by the anatomical coarse-graining in the MH connectome or by the coarse-graining in the
similarity dimension in the GR case. In E–G, Insets, error bars show the 2σ CI around the mean; the bars may be smaller than the symbol. (H) Community
structure of the multiscale connectomes. The subscripts {emp, GR} indicate the empirical MH connectome and the GR shell, respectively. AMI(emp,GR)

0 is the
adjusted mutual information between topological communities in the empirical MH connectomes at each layer and the GR flow measured in their projection
over layer 0.

into consideration, we used the connection probability Eq. 1 as
in the S1 model, but using Euclidean distances xij instead of sim-
ilarity distances dij . The hidden degrees κ can be approximated
by the actual degrees k (the two are very similar; SI Appendix,
Fig. S15), and the values of β and µ were adjusted to match the
clustering and average degree of the empirical connectome. As
shown in Fig. 5 C and D, the model based on Euclidean dis-
tances cannot reproduce the empirical observations. Euclidean
distance is certainly an important factor, but not the only one
determining similarity distance needed to reliably reproduce the
topological properties of the MH connectome. In contrast, the fit
of the S1 model based on similarity distance, underlying the GR
technique, is very good.

Altogether, these results indicate that GR naturally and accu-
rately predicts the scale invariance and the self-similarity of MH
connectomes. Indeed, GR provides rescaled layers that statis-
tically mimic the structure of the brain at larger scales, using
only structural information measured at one single resolution.
Let us stress once more that no new information about the
anatomical coarse-graining of brain regions in the MH connec-

tome was used when going from one resolution to another in
the GR renormalization process; we just inferred a geometric
map from the highest-resolution empirical data and used con-
secutive nodes in this space to produce the structure of each
renormalized layer.

Self-Similarity and Navigability. Hyperbolic network maps sustain
efficient navigation (30), a remarkable finding that is also valid
for the brain (32). To check the navigability properties of connec-
tomes at different resolutions, we implemented greedy routing,
a decentralized communication protocol in which a source node
transmits a message along to its neighbor that is the closest
to a target node in the metric space (47). The performance
of greedy routing is measured by the success rate, ps , and the
average stretch of successful greedy paths, s̄ . The success rate
counts the fraction of successful greedy paths when consider-
ing 10,000 random node pairs source-target. Note that greedy
routing does not guarantee that a message will reach its tar-
get node; the message may reach an already visited node and,
therefore, may get trapped in a loop. The average stretch of
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A B

C D

Fig. 5. Empirical versus theoretical probability of connection. Results
for UL subject no. 10 are shown. (A) Empirical connection probabilities
p(l)(x(l)

ij ) as a function of the Euclidean distances x(l)
ij in the MH con-

nectome. A, Inset shows the empirical connection probabilities p(l)(x(l)
res)

as a function of rescaled Euclidean distances x(l)
res = x(l)/a(l) with a(l) =

[1.0, 1.5, 2.6, 3.8, 4.0]. (B) Empirical versus theoretical connection probabil-
ity p(l)(λ(l)

ij ), Eq. 1, in the GR shell. (C) Complementary cumulative degree
distribution Pc(k). (C, Inset) Modularity Q, as measured by the Louvain
method, is shown. (D) Degree-dependent clustering coefficient c̄(k). (D,
Inset) Average degree of neighbors k̄nn,n(k). The filled symbols correspond
to the empirical connectome of subject no. 10. Green dashed lines are gen-
erated by using the S1 model with Euclidean distances and parameters
β= 2.75 and µ= 0.0117. Red lines correspond to the standard S1 model
(β= 1.96,µ= 0.0104).

successful paths consists of the ratio of the number of links in
the successful greedy path and the number of links in the topo-
logical shortest path, averaged over all successful greedy paths.
Navigation is considered maximally efficient if the success rate
and the stretch are both equal to one, meaning that all mes-
sages have reached destination and have done so by following the
shortest paths.

We studied navigation in the anatomical Euclidean embed-
dings, the collection of individual MH embeddings in the hyper-
bolic plane, and the GR shell for all UL subjects; results are
summarized in Fig. 6 (see SI Appendix, Fig. S37 for the HCP
dataset). Remarkably, the variability between subjects is very
low (as shown by the error bars). In both geometries, there is
a systematic trend toward a more efficient navigation, both in
terms of success rate and stretch, as the resolution is decreased
and longer-range connections progressively dominate and as
the density of connections increases. However, the navigabil-
ity of the hyperbolic maps is higher, as reported in ref. 32,
with larger success rates and lower stretch values. Note that
the last two layers are very dense, which ensures a very high
navigability in both Euclidean and hyperbolic geometries. Inter-
estingly, the efficiency of the navigation protocol in each layer
of the GR shell is close to that in the embedding of the cor-
responding MH layer (SI Appendix, Fig. S16). Similar results
were obtained with the multiscale navigation protocol intro-
duced in ref. 19, where we see that the success rate increases
even more as more layers are used to guide navigation. In fact,
it becomes very close to 100% with the inclusion of just two
renormalized layers, and this improvement comes at the expense
of only a mild increase of the stretch of successful paths (SI
Appendix, Fig. S17).

To understand the interplay between self-similarity and nav-
igability, we compared these results with results obtained with
ensembles of multiscale null models. We used four null models
(48) to obtain randomized versions of layer l = 0 (see Materi-
als and Methods for a description of the models). Repositioning
Euclidean (RP Euclidean) and Repositioning Geometric (RP
GE) preserve the topology, but randomize the geometry by
shuffling the position of the nodes in Euclidean space and
in the similarity dimension, respectively. Coordinate-Preserving
Edge-Rewiring Euclidean (CP-ER Euclidean) and Coordinate-
Preserving Edge-Rewiring Geometric (CP-ER GE) preserve the
geometry in terms of the total distance between connected nodes
(measured, respectively, in the Euclidean space and in the hyper-
bolic space) while the topology is rewired. Further details are
provided in Materials and Methods. In RP Euclidean and CP-RW
Euclidean, the renormalized layers were constructed following
the anatomical coarse-graining of the MH connectomes, while
the ones in RP GE and CP-RW GE were obtained by GR.
Because the topology-preserving null models, RP Euclidean
and RP GE, destroy the ordering of nodes in their respec-
tive geometry, self-similarity disappears, and the efficiency of
greedy routing decreases dramatically. This means that geome-
try influences self-similarity and, therefore, that both geometry
and self-similarity play a crucial role in navigability. Turning
our attention to geometry-preserving null models, we see that
the navigability performances observed in human connectomes
cannot be attributed solely to the underlying geometry and,
therefore, that the explicit wiring of these connectomes also

A B

C D

E F

Fig. 6. Navigability of the MH connectomes and the GR shells at different
resolutions. (A and B) Average success rate (A) and average stretch (B) for all
UL subjects. Navigation performance was benchmarked against four differ-
ent random null models. The error bars show the 2σ CI around the expected
values. (C–F) The loss of self-similarity in the four ensembles of random null
models can be seen through the loss of self-similarity of their complementary
cumulative degree distribution and degree-dependent clustering coefficient
(Insets) (see SI Appendix, Figs. S18 and S19 for more results). For each null
model, we generated 100 multiscale surrogates for UL subject no. 10.
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plays a determinant role. Self-similarity was also lost in CP-RW
Euclidean surrogates, even if 99% of network cost was pre-
served, which resulted in significantly less navigability than in the
original connectomes. In contrast, CP-RW GE surrogates still
displayed a high level of self-similarity, meaning that surrogates
do not depart significantly from the original network (disregard-
ing layers 3 and 4 strongly affected by finite-size effects) and high
navigation performance. See SI Appendix, Figs. S18 and S19 for
more results. These results suggest an interplay between the self-
similar multiscale organization of brain connectomes and their
navigability.

Discussion
The structure of the human brain spans over a range of length
scales, which magnifies its complexity, otherwise constrained by
overarching patterns. We uncovered self-similarity as one of such
patterns in the multiscale structure of the human connectome,
which, paradoxically, introduces simplicity as an organizing prin-
ciple. In our work, simplicity has a very precise meaning. It states
that the structure of connectomes and the underlying connectiv-
ity rules that explain this structure are independent of the scale
of observation (at least within the scales covered in this work). In
other words, a specific set of rules for each scale is not required.

On the one hand, we showed that the MH connectome is
self-similar when the resolution of observation is progressively
decreased by hierarchical coarse-graining of the anatomical
regions. We reconstructed high-quality MH connectomes at five
spatial resolutions for a total of 84 healthy subjects that displayed
a remarkable level of homogeneity in the results. The fact that
the smallest layers, with 128 and 82 nodes, were affected by finite-
size effects suggests an upper bound on the scale for which the
self-similarity of the MH connectome can be observed. Higher-
resolution datasets with more refined brain parcellations will be
required to investigate possible lower bounds.

Using a geometric model based on a simple connectivity law,
Eq. 1, encoding simultaneously long- and short-range connec-
tions, our results show that the GR approach is able to explain the
self-similar structure of human connectomes at different scales.
This implies that the same principles govern the connectivity
between brain regions at different length scales and that a differ-
ent connectivity law at each resolution is not needed. Notice that
the self-similarity of the MH connectomes and the goodness of the
GR model to explain this self-similarity happen at the individual
level of each single subject. The high fidelity of the GR shell in
replicating the empirical data, as supported by the result of sev-
eral statistical tests, suggests that connectivity at lower resolutions
can be inferred from observations at higher resolutions.

As all questions related to symmetries, the ultimate reason
for self-similarity in the brain is a profound matter that will
require full understanding of how structure is related to function
in the brain. Multiscale self-similarity implies a higher compres-
sion of the information needed to encode the architecture of
the brain, and it may be related to the need of efficient com-
munication between brain regions. While communication in the
brain has been modeled using different protocols, from short-
est paths to random diffusion (48–51), its control and regulation
are subjects of ongoing debates (51). Shortest-path navigation
relies on the unrealistic assumption that neural elements possess
global knowledge of the network topology, while random diffu-
sion needs bias to travel via efficient routes. At the same time,
evidence indicates that targeted information processing may play
an important role in brain-communication dynamics, and greedy
routing protocols could, nonetheless, offer a simplified, yet fun-
damental, illustration (32, 48, 52). For instance, hippocampal
neurons can transmit distinct behavior-contingent information
selectively to different target areas (53).

Hyperbolic space and GR might also be relevant for brain-
network development or evolution. In this respect, we now have

supporting evidence that the GR transformation based on our
geometric network models in hyperbolic space is directly related
with a branching growth mechanism that is able to explain the
self-similar evolution of real complex networks over long time
spans (54). Those results and those obtained in the present
work pose the intriguing questions of whether the observed self-
similarity of the human brain connectomes could be related to
mechanisms driving their growth and, therefore, whether their
evolution could be conceptualized within the framework of the
GR group as observed for other real networks.

The implications of our findings are, thus, varied and can affect
fundamental debates, such as whether the connectome is a sys-
tem near the critical point of a phase transition (55). According to
results in ref. 19, successive GR transformations of networks with
heterogeneous degree distributions and high levels of clustering
typically flow toward a fully connected graph as a fixed point, while
networks with more homogeneous distributions and very high lev-
els of clustering tend toward a one-dimensional ring. In the former
case, the average degree increases in the flow, while it decreases
in the latter case. Right at the continuous transition between the
two phases, networks would have a scale-invariant average degree
with a constant value preserved under GR transformations. Our
results show that the average degree of otherwise scale-invariant
human brain connectomes increases slightly in the GR process
and, according to statistical tests, in a way that is compatible with
an almost constant average degree. This implies that human brain
connectomes are near this critical structural transition between
small-world and non-small-world regimes.

At the level of applications, both the scale invariance of the
brain structure and the existence of a model that unravels its self-
similarity may have an important impact on the development of
advanced tools that simplify its digital reconstruction and simu-
lation. At the same time, our results suggest that the number of
regions in a brain atlas is an important question. Specific details
at the smallest of the considered scales could be redundant when
informing about the large-scale structural organization of the
brain, while an insufficient number of regions could bias the
observations. Another potential advantage of the self-similarity
of brain connectomes is that it can be used to detect possible
biases, depending on length scales, associated with the differ-
ent data-preprocessing methods and brain-mapping techniques.
Finally, immediate follow-ups of our work include studies to
assert the renormalizability of functional brain networks and
alterations in renormalizability produced by normal aging or
possible brain disorders.

Materials and Methods
UL Dataset. Informed written consent in accordance with the institutional
guidelines (protocol approved by the Ethics Committee of Canton de
Vaud (CER-VD) was obtained for all subjects. Forty healthy subjects (16
females; 25.3± 4.9 years old) underwent an MRI session on a 3T Siemens
Trio scanner with a 32-channel head coil. Magnetization prepared rapid
acquisition with gradient echo (MPRAGE) sequence was 1-mm in-plane
resolution and 1.2-mm slice thickness. The diffusion spectrum imaging
(DSI) sequence included 128 diffusion-weighted volumes +1 reference
b0 volume, maximum b value = 8,000 s/mm2, and 2.2× 2.2× 3.0-mm
as voxel size. The echo-planar imaging sequence was 2.2.-mm in-plane res-
olution and 3.3-mm slice thickness with TR = 1,920 ms. DSI and MPRAGE
data were processed by using the Connectome Mapper Toolkit (56). Each
participant’s gray- and white-matter compartments were segmented from
the MPRAGE volume. The gray-matter volume was subdivided into 68 corti-
cal and 15 subcortical anatomical regions, according to the Desikan–Killiany
atlas (57), defining 83 anatomical regions. Each cortical region was sub-
divided into smaller regions of interest (ROIs) of approximately identical
surface, such that the total number of regions was 1,015, including both
hemispheres. The ROIs were regrouped iteratively into bigger ROIs to cre-
ate five different parcellations, with 1,015; 463; 234; 129; and 83 ROIs,
respectively, corresponding to five different resolution scales (14). In lay-
ers 0, 1, and 2, the surface areas of ROIs remained approximately equal,
while for layers 3 and 4, the sizes were more disperse (SI Appendix, Fig. S1
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and S2). The parcellations at different resolutions were spatially hierarchical,
with a correspondence between the nodes at different length scales, as
defined by the coarse-grained regions. The hierarchical decomposition was
obtained by grouping sets of two or three neighboring brain regions
to build a partition with decreased resolution, and the operation was
repeated several times until the 83 parcels at the lower-resolution scale were
recovered.

At each scale and for each individual subject, connection weights
between pairs of regions in the corresponding parcellation were quanti-
fied as fiber density (58). To track wires between brain regions, whole-brain
deterministic streamline tractography was performed on reconstructed DSI
data, initiating 32 streamline propagations (seeds) per diffusion direction,
per white-matter voxel (59). Within each voxel, seeds were randomly placed,
and for each seed, a fiber streamline was grown in two opposite directions
with a 1-mm fixed step. Fibers were stopped if a change in direction was
greater than 60 degrees/mm. The process was complete when both ends
of the fiber left the white-matter mask. The connection weight between
the pair of brain regions {u, v} captures the average number of streamlines
per unit surface between u and v, corrected by the average length of the
streamlines connecting such brain regions. The aim of these corrections is to
control for the variability in cortical region size and the linear bias toward
longer streamlines introduced by the tractography algorithm.

Fiber densities were used to construct individual subject structural con-
nectivity matrices at the five different resolutions. Each matrix was mod-
eled as a weighted adjacency matrix W = wij of a network G = V,G
with nodes V = v1, . . . , vn representing regions at the corresponding scale,
and weighted, undirected edges E = e1, . . . , em representing anatomical
connections with their fiber densities. The present study considered the
unweighted version of the connectivity adjacency matrices at each scale
and discarded the brainstem (one node) for all subjects. We have also
removed nodes that were isolated in the original dataset due to fluctua-
tion in the data-acquisition experiment, nodes that became isolated after
the removal of the brainstem region, and nodes that were only connected
to themselves by a self-loop. These adjustments caused negligible variations
in the number of nodes of the highest-resolution layer from subject to sub-
ject. The highest-resolution layer comprised typically 1,014 equal-sized ROIs,
which were then coarse-grained into 462; 233; 128; and 82 regions at lower
resolutions.

HCP Dataset. For cross-validation, we used T1-weighted and corrected
diffusion-weighted magnetic resonance images (DWIs) of 44 subjects from
the HCP (39). The corrected DWI for each subject was employed to fit a
second-order tensor for each voxel and its different voxelwise scalar maps
(fractional anisotropy and mean diffusivity) by using Dipy (60). The DWIs
were also used to estimate the intravoxel fODF by using the Constrained
Spherical Deconvolution (CSD) (61) approach implemented in MRtrix3
(https://www.mrtrix.org/). This technique, based on high-angular resolu-
tion diffusion imaging, estimates the orientation of multiple intravoxel
fiber populations within regions of complex white-matter architecture. This
fODFs were used by the SDSTREAM (Streamlines by using Spherical Deconvo-
lution) (40) deterministic fiber-tracking algorithm to obtain the streamlines
distribution for each subject. The structural connectivity matrices were then
computed, defining the connection strength between each pair of regions
as the number of streamlines connecting them. Finally, multiscale struc-
tural connectivity matrices were obtained by using the same hierarchical
anatomical coarse-graining method described above for the UL dataset.

Notice that, in this work, we always used deterministic streamline
tractography algorithms yielding sparse connectomes, which give higher
specificity and lower sensitivity as compared with probabilistic algorithms.
Connectomes with high sensitivity and high specificity are unattainable with
current axonal fiber-reconstruction methods. Sparse connectomes contain
only a subset of the possible projections in the fiber-orientation distri-
bution, whereas the probabilistic algorithms yield denser connectomes at
the price of low specificity due to false positives (FPs). The network sci-
ence methods that we used in our study, and, in particular, the embedding
technique, require that connectomes are sparse and reliable. Hence, deter-
ministic streamline tractography is more appropriate for our purposes. In
addition, as argued in ref. 62, connectome specificity is paramount since
FPs are at least twice as detrimental as false negatives when estimat-
ing key topological properties of brain networks, including clustering and
modularity.

H2 Model and Hyperbolic Maps. In the H2 representation, the angular coor-
dinates remained the same as in the S1 model, but the hidden degrees were
transformed into radial coordinates using

ri = RH2 − 2 ln
κi

κ0
, [3]

where the radius of the hyperbolic disk is RH2 = 2 ln N/(πµκ2
0) with κ0 =

min({κi}). Higher-degree nodes are therefore located closer to the center
of the H2 disk.

The hyperbolic MH maps, used as the starting point of the GR process,
were obtained by using the algorithm introduced in ref. 31. More pre-
cisely, these maps were inferred by finding the hidden degree and angular
position of each node, {κi} and {θi}, that maximize the likelihood

L=
∏
i<j

[
pij
]aij
[
1− pij

]1−aij, [4]

that the structure of the network was generated by the S1 model, where
{aij} are the entries of the adjacency matrix of the network. In Fig. 3 B–G, we
show the topological validation of the embedding of the highest-resolution
network for UL subject no. 10.

Renormalization Flow of Community Structure. To assess how the commu-
nity structure of the empirical MH connectomes and of the GR unfolding
changes with the resolution scale, we obtained the community partitions
P(l)

emp and P(l)
GR and the corresponding modularities Q(l)

emp and Q(l)
GR for every

layer l using the Louvain method (42). We also defined the partition induced
by P(l)

emp/GR on layer 0, P(l,0)
emp/GR, obtained by considering that if two nodes i

and j in layer l belong to the same community in P(l)
emp/GR, then all of the

nodes in layer 0 belonging hierarchically to coase-grained regions i and
j are in the same community in P(l,0)

emp/GR. We can calculate the modulari-

ties Q(l,0)
emp/GR of P(l,0)

emp/GR, and the adjusted mutual information AMI(l,0)
emp/GR

between the induced community partition P(l,0)
emp/GR, and the original com-

munity partition directly detected in layer 0. We also report the overlap with
the adjusted mutual information AMI(emp,GR)

0 between topological commu-
nities in the MH connectomes at each layer and the GR flow measured in
their projection over layer 0, i.e., P(l,0)

emp/GR.

Null Models. We used the following null models (48) to obtain randomized
versions of layer l = 0:

• RP Euclidean, repositioning nodes in Euclidean space by swapping
coordinates of pairs of nodes selected at random;

• RP GE, repositioning nodes in the geometric embedding by swapping
angular coordinates of pairs of nodes selected at random;

• CP-RW Euclidean, rewiring edges while preserving coordinates, degrees,
and the total cost in the network defined as the sum of the Euclidean dis-
tances between connected nodes. More specifically, two selected edges
A− B and C−D with Euclidean distances dAB and dCD were swapped
to A−D and B− C with Euclidean distances dAD and dBC if |(dAB +

dCD)− (dAD + dBC )|<ε, so that connection swaps that do not alter the
resulting connectome cost by more than the tolerance ε (set to 1 mm).
Self-connections and multiple links are forbidden in the rewiring process.
The departure from the cost of the original connectome grows with the
number of swaps. We keep ∆cost = 1− |1− costnull/costemp|> 99%.

• CP-RW GE, rewiring edges while preserving coordinates, degrees, and the
total cost in the network defined as the sum of hyperbolic distances in
the geometric embedding. We implemented with a routine similar to the
Euclidean case, but replacing Euclidean distance with the hyperbolic one
hij . We set the tolerance ε to 0.478 so that the ratio ε/min(hij) is equal to
the one in CP-RW Euclidean.

Data Availability Statement. The UL and HCP MH connectomes obtained for
this study, and their maps in hyperbolic space and GR shells, are available
via the Zenodo platform at https://doi.org/10.5281/zenodo.3766139.
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