Neuroinformatics
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Week 3: Simplified neuron and population models
(textbook chapter 3)



Single-Neuron simulation

Passive propagation (dendrite and soma)
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Single-Neuron simulation

Benefits Disadvantages

«Can reproduce activity of ¢ Needs neuron morphology

single neurons (dendritic layout)

Can be used to model * Needs information about ion
detailed changes (external ~ channels, synapse position,
currents or the effect of neurotransmitter type

drugs) * |s slow to calculate for large

numbers of neurons

=> Need for simplified neuron models



Integrate and Fire Neurons

Simplifications

» The alpha function directly relates to the
voltage at the axon hillock (no modelling of
passive propagation) oy

o2

» Spike time rather than the shape of the action a3
potential is important (shapes are similar)

» Synaptic properties are modelled through the
synaptic strength value w (also called efficacy)



Integrate and Fire Neurons
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A pre-synaptic spike d(t - ") is low-pass filtered at the synapse and
generates an input current pulse a(t - t)
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A current I(t) charges the RC circuit. The voltage u(t) across the
capacitance (points) is compared to a threshold § If u(f) = 9 at time ¢
an output pulse §(t - t() is generated.



e wma The leaky integrate-and-fire neuron
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ey
l“‘t" » The driving current can be split into two components, /(f) = Iz + /. The first
] i component is the resistive current Iz which passes through the linear
R[] C— (B i resistor R. It can be calculated from Ohm's law as I = u/R where u is the
! + voltage across the resistor. The second component /- charges the capacitor
C. From the definition of the capacity as C = g/u (where q is the charge and

JAE TN ” u the voltage), we find a capacitive current I = C du/dt. Thus

(t) du

IH)= +C 57 - Multiply by R

Time constant 7., =R C of the "leaky integrator'. This vields the standard form
Leakage rate ‘Leak’ Signal

Spikes are events characterized by the “firing time' £ when

u(t@) =1 .

Immediately after t(f), the potential is reset to a new value uy < 7. . t(]‘i)f_ﬁ‘t - u(t) = ur .



|F simulation

A. External input Rlext =8 mV < threshold 3 B. External input Al ext= 12 mV > threshold 9
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|F activation function

First passage time: Time a neuron need for constant input
to reach the threshold and fire

The inverse of the first passage time defines the firing rate:
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A. Time varying input
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The Izhikevich neuron (2003)

Problems with LIF neurons: does not reproduce the full
range of experimentally observed response patterns.

-> Eugene Izhikevich developed a model that can reproduce
experiments AND is much simpler than single-neuron models!
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http://www.izhikevich.org/



The McCulloch-Pitts neuron (1943)

h = Z X" Summation of input (no synaptic weights!)
i

Step-wise activation function

sout _ 1 ifh>0© —
1 0 otherwise T

-> Birth of artificial neural network (ANN) research

BULLETIN OF
MATHEMATICAL BIOPIIYSICS
VOLUME b, 1943

A TOGICAL CALCULUS OF THE
IDEAS IMMANENT IN NERVOUS ACTIVITY

WARREN S. MCCULLOCH AND WALTER PITTS

From Tuep UNIVERSITY OF JLLINOLIS, COLLEGE OF MEDICINE,
DEPARTMENT OF PSYCHIATRY AT THE ILLINOIS NEUROPSYCHIATRIC INS
AND THE UNIVERSITY OF CHICAGO

Because of the “all-or-none” character of nervous activity, r
events and the relations among them can be treated by means of P
gitional logie. It is found that the behavior of every net can be des
in these terms, with the addition of more complicated logical mear
nets containing circles; and that for any logical expression satis




Neural coding



What the brain ‘sees’
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The firing rate hypothesis

Stimulus features are encoded through the neural firing rate
(response curves).

Stretch receptor on frog muscle

Firing rate [Hz]

Weight [g]

Edgar Adrian
The Nobel Prize in Physiology or Medicine 1932




The firing rate hypothesis

Receptive field: area in the outside/physical
world for which a neuron 1s responsive.

Feature preference
Tuning curve of V1 neuron in cat
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Firing rate [Hz]

Relative firing rate [Hz]

The correlation code hypothesis

A. Stimulus envelope
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B. Rates of individual spike trains

C. Spike-triggered rate
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Stimulus features are
encoded by neurons firing
around the same time

From DeCharms and Merzenich 1996



?

From Buracas et al. 1998
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Seminar papers online at
http://www.biological-networks.org/t/cneurosci/seminar.zip

News
Qualcomm Zeroth



Neural computation



LOGICAL OPERATIONS

For example OR:

Input 2

v

Input 1—> Output similar to summation: 0+0=0

pd 0+1=1

0| 1
oﬁ )

1+0=1
1‘}\1 1 1+1=9%1

Digital computations with neurons

1 = a spike has occured
0 = no spike has occured




Necessary conditions for optimal summation:

1) synapses have to be closely adjacent
2) pre-synaptic signals have to arrive simultaneously
3) resting potential and reversal potential(s) have to be very different.

S

rest.
pot.

EPSP__ =EPSP, +EPSP,

The little “shoulder” shows that the

simultaneous
inputs !

EPSPs were not truely simultaneous.

If the synapses are far from each other the amplitude will be

Summation
point

~— Soma

Dendrite

Spatial Summation

less at the first summing point. It will then further decay
until reaching the soma.

mVAA EPSP__ < EPSP, + EPSP.

B

pot.
P t




If the signals are not simultaneous then the sum will be smaller

mVAA B
S

A
_A,\ rest.] / N\ .
pot.
B .

The early signal (A) facilitates the later signal (B). Together the firing threshold
might be reached but not alone.

Temporal Summation

mVA B
. o . A
If the difference in arrival times is N \
too large, temporal summation —/\_j\"_
does not occur anymore ! rest. —— _— ]
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P t




Subtraction

Transmitter release at a synapse leads to an inhibitory postsynaptic
potential (IPSP) because ion channels are opening.

The same conditions apply as for summation. Then one can regard
an IPSP as a sign-inverted EPSP. “Summation” becomes “Subtraction”.




Shunting inhibition
|s often also called “silent inhibition” because by itself no change
of the membrane pot. is observed.

Cl not Cl slightly Cl strongly
active active active

-jf\ J\ M
>
kEPSP T L

Res. “activity of CI”

>

mV

Acts like a “Division”

shunting inhibition = silent inhibition = divisive inhibition (synonymous terms)




How to realize an OR-gate neuronally:

note the steeper
0,1 rising flank

\3‘ b 1 1

0,1
y i _ _ _firing
threshold
'
Input Input Input from

from A fromB A and B

If the firing threshold is low enough then every EPSP will elicit
a spike.

This emulates the function of an OR-gate.




How to realize an AND-gate neuronally:

01 1 similar to multiplication: 0.0=0
0.1=0
AND
010109 1.0=0
110 | 1 1.1=1

Input Input Input from
fromA fromB AandB

If the firing threshold is high enough then a spike will only be elicited wher
two (or more) EPSPs occur at about the same time.
This emulates the function of an AND-gate




Example: Direction selectivity in the visual cortex:

Visual cortical cells usually respond strongly when
a moving stimulus is presented. Almost all respond
stronger for motion in the one direction as HII
opposed to motion in the opposite direction:

Direction selectivity.

ON - center OFF - center . . .
- _—~«_ One idea how this might be
\ "\ generated at the single cell
|
) ) level:
/ .
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| ST \ / / : I
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R Lo non-preferred / // f; |
\ \  direction = / ; . c b ey ey
; H‘\ \\ \\\ Null-direction / // | I# Shuntlng |nh|b|t|0n
\ . .
L\ A TN Synaptlc signals (EPSPs)
i \ N A7\ travelling along the Null-

7NN\ . S A= e _ite"+ direction are shunted by
+ t— / ./ NRTT
- ' inhibition.




Population models



Population model

Motivation
A set of neurons can sometimes be modeled as a population

-> dealing with populations reduces processing time and complexity
-> useful for cognitive models (high-level functions)

-> abstract away from individual spikes

Assumptions/Limits

Pool of neurons with similar response functions
acting in a statistically similar way.




Population model

Temporal averaging Population averaging
(one neuron) (many neurons)
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Population dynamics

For slow varying input (adiabatic limit), when all nodes do practically
the same, and the same input (Wilson and Cowan,1972):

dA(t
T (1) = —A(t) + g(RIF*'(1)).
dt
Gain function: g(x) — 1
tef — rlog(1 — =)’
A. Activation function for population B. Activation function of hippocampal
average in adiabatic limit pyramidal neuron
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Other gain functions

Type. of _Graplucal Mathematical formula MATLAB implementation
function represent.

Linear / gM(x) = x X

Step gSP (x)= T ifx>0 floor (0.5* (1+sign(x)))

_ | \0 elsewhere

mh;il;?]d- / gmm (x) =x O (x) x.*floor (0.5* (1+sign(x)))
Sigmoid g8 (x) = —L 1./ (l+exp(-x))

1gmol ‘ T+exp(-x) APATA

Radi.al- g 8aSS (r) - eXp(-r‘) exp (-X. A2

basis / \




Fast population response (rapidly varying input)

A stimulus increase leads to rapid firing rate changes as Non-adiabatic
many neurons in a population are close to the threshold! regime
0.15

Average population spike
rate from IF neurons
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-> use shorter population time constants when the input varies rapidly



Summary

Simplified models of single neuron activity
- Leaky integrate and fire (LIF) neurons
- Izhikevich neurons

- McCulloch-Pitts neurons

Multiple neurons can be further aggregated

- population models
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