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The folding of the cortex in mammalian brains across species has
recently been shown to follow a universal scaling law that can be
derived from a simple physics model. However, it was yet to be
determined whether this law also applies to the morphological
diversity of different individuals in a single species, in particular with
respect to factors, such as age, sex, and disease. To this end, we
derived and investigated the cortical morphology from magnetic
resonance images (MRIs) of over 1,000 healthy human subjects from
three independent public databases. Our results show that all three
MRI datasets follow the scaling law obtained from the comparative
neuroanatomical data,which strengthens the case for the existence of
a common mechanism for cortical folding. Additionally, for compa-
rable age groups, both male and female brains scale in exactly the
same way, despite systematic differences in size and folding.
Furthermore, age introduces a systematic shift in the offset of the
scaling law. In the model, this shift can be interpreted as changes in
the mechanical forces acting on the cortex. We also applied this
analysis to a dataset derived from comparable cohorts of Alz-
heimer’s disease patients and healthy subjects of similar age. We
show a systematically lower offset and a possible change in the
exponent for Alzheimer’s disease subjects compared with the con-
trol cohort. Finally, we discuss implications of the changes in offset
and exponent in the data and relate it to existing literature. We,
thus, provide a possible mechanistic link between previously
independent observations.
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The expansion of the cerebral cortex is the most obvious fea-
ture of mammalian brain evolution and generally accompanied

by increasing degrees of folding of the cortical surface. The mech-
anisms that drive gyrification have been a matter of intense research
interest lately (1–4), with a number of proposals being put forward
to explain it. Most such studies have focused on human cortices,
using detailed MRI data to postulate folding as driven by the
[possibly differential (5) or multilayered (6)] expansion of the cor-
tical surface. In contrast, we have recently proposed a model (7), in
which folding is a consequence of the dynamics of surface expan-
sion and self-avoidance coupled with a negative tension term. This
model was partly inspired by the axonal tension hypothesis by Van
Essen (8) and the statistical physics of membranes (9). By assuming
that healthy adult mammalian cortices have a shape that minimizes
an effective free energy term that takes into account these effects,
this model predicts a power law relation between cortical average
thickness T, exposed area Ae, and total area At, namely

AtT1=2 = kA5=4
e . [1]

The only free parameter is k, or offset, a dimensionless co-
efficient that is presumed to be related to both the axonal ten-
sion and the pressure of cerebral spinal fluid (CSF)
(supplemental text in ref. 7). In geometric terms, the variables T,
At, and Ae associated with each cortex define a point in the
logT × logAt × logAe space, and Eq. 1 constrains these points

to a plane: 1=2logT + logAt − 5=4logAt = log k. In effect, this
relationship eliminates the degree of freedom associated
with the direction ~k= f1=2, 1, 5=4g. In other words, this ap-
proach essentially provides a mapping to a new, more natural set
of variables with which to describe cortical morphology.
Using data from different mammalian species, we had pre-

viously verified that this relation is closely followed by gyrified
and lissencephalic cortices. In adaptive terms, cortical folding
scales universally across clades and species, implying a single
conserved mechanism throughout evolution. Indeed, comparing
AtT1=2 with Ae for all 51 land mammals in our data shows an
excellent fit for AtT1=2 = kA1.305±0.007

e . The empirical exponent for
Ae, 1.305, is very close to but statistically distinct from the pre-
dicted 1.25. We previously discussed that the source of this may
have a number of reasons (7) (indeed, we provide an alternative
explanation in Discussion).
Regardless, the existence of such precise regularity as predicted by

a model derived from simple assumptions is quite remarkable and
revealing. This regularity does not at all imply that other omitted
details are not important but rather, that they simply are not the main
drivers of the coarse-grained cortical morphology. At this whole-
cortex level, gyrification seems to be determined by an extremely
limited set of degrees of freedom described by a simple scaling law.
The exact explanation of this relation in terms of our model has also
been questioned (10, 11) and defended (12). However, even if one is
not convinced about its proposed explanation, the fact remains that a
strong and seemingly universal empirical relation exists between the
coarse-grained morphological features of cortices of different mam-
malian species. It is, therefore, worthwhile to investigate whether the
same relation holds for individuals of a single species.
Previous studies of cortical folding in a single species mainly fo-

cused on MRI data in humans and examined the changes in

Significance

Despite of the enormous diversity in size and function of the
mammalian cerebral cortex, it has been shown that the cortices
of different species fold according to a simple universal law. In
this study, we investigate if this law also applies to variation
within a single species—our own. Specifically, we examine how
the law is affected by sex, age, or the presence of Alzheimer’s
disease. By investigating and quantifying what remains invariant
and what changes in each case, we shed some light on the un-
derlying mechanisms through which the cortex changes in health
and disease and argue that morphological complexity could
emerge from a few simple rules.

Author contributions: Y.W. and B.M. designed research; Y.W. and B.M. performed re-
search; Y.W. and B.M. contributed new reagents/analytic tools; Y.W. and J.N. analyzed
data; and Y.W., J.N., M.K., and B.M. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.
1To whom correspondence should be addressed. Email: yujiang.wang@newcastle.ac.uk.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1610175113/-/DCSupplemental.

12820–12825 | PNAS | November 8, 2016 | vol. 113 | no. 45 www.pnas.org/cgi/doi/10.1073/pnas.1610175113

http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1610175113&domain=pdf
mailto:yujiang.wang@newcastle.ac.uk
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1610175113/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1610175113/-/DCSupplemental
www.pnas.org/cgi/doi/10.1073/pnas.1610175113


gyrification, for example, with age (13), with sex (14), and in de-
mentia (15). We now seek to test our model against such human
cortical surface reconstructions from MRI data and examine its
applicability over variations across different human subjects in sex,
age, and health or disease. This analysis allows us to delve deeper
into the factors that neither a purely comparative approach, with
one or two specimens for each species, nor a descriptive detailed
analysis of one or a few human cortices can examine.
Specifically, we investigate how diversity in cortical morphol-

ogy between species [as reported by comparative neuroanatomy
(7)] relates to diversity within a species (as reported by human
MRI). We examine how the factors that drive the latter affect
the model parameters, both those constrained (exponents) and
unconstrained (offset) by theory. For instance, it is known that
the cortex generally shrinks and slightly changes in folding with
age (13, 16–18) and that males have, on average, larger brains
than females, with a slightly increased degree of folding (14, 17,
19). However, it is unknown if and how these changes affect the
scaling law.

Results
Human Brains Fold Like Other Mammalian Cortices. Previously, Mota
and Herculano-Houzel (7) showed that, although mammalian
cortices vary greatly in size, thickness, and the degree of folding,
empirically, they all closely follow a simple universal scaling law.
Here, we investigate if such an invariant relation also exists
within and across cohorts of human subjects. Not only is this
testing the previously proposed theory in an intraspecies study
(in contrast to the previous interspecies study), but the range
over which the measurements of total cortical surface area,
cortical thickness, and exposed surface area vary is also dra-
matically reduced. Finally, the method of data acquisition differs:
here, we use MRI-derived measures of cortical surface area (At),
cortical thickness (T), and exposed surface area (Ae) rather than
manual tracing of scanned cortical slices. Given these major
differences in data acquisition, species, and range of measure-
ments, it is not immediately obvious that the human cohort data
will conform to the interspecies scaling law.
To test if both the previously published interspecies data and

our human MRI-derived data are comparable, we show both in
Fig. 1 in the same plot. We used three independent healthy
datasets, which were acquired on separate scanners, using dif-
ferent acquisition protocols. These datasets are the Human
Connectome Project (HCP), the Open Access Series of Imaging
Studies (OASIS), and the Nathan Kline Institute (NKI) (Mate-
rials and Methods has more details). Indeed, the MRI-derived
datasets align well with the previously obtained mammalian
dataset, despite the fundamentally different methods of obtain-
ing them. In particular, the adult human dataset (the HCP) (Fig.
1, Left Inset) shows a very good agreement with the regression
based on the previously published mammalian dataset, apart
from a slight systematic offset.
This alignment can be quantified by comparing the quantity

k′=AtT1=2A−1.305
e derived from the fit for the comparative

neuroanatomy dataset (gray line in Fig. 1). We obtain
kComparativeNeuroanatomy′ = 0.1861± 0.0184, kHCP′ = 0.1822± 0.0057,
kOASIS′ = 0.1669± 0.0086, and kNKI′ = 0.1786± 0.0109. The vari-
ance in the comparative neuroanatomy dataset is somewhat larger
than that of the human MRI datasets, whereas the means in the
latter all fall within 1 standard deviation of the former, indicating
that the linear fit in the comparative neuroanatomy dataset is also
a similarly good fit for the human MRI dataset, except for some
change in the offset. Strikingly, the HCP dataset has a much
smaller variance than the other human MRI datasets, and we will
see later that this is caused by the narrow age range in the
HCP data.
The systematic differences in offset between the human MRI

datasets are probably attributable to different imaging protocols,

scan resolution, processing pipelines, and field strength, which
are known to produce systematically different measured values,
most notably for the cortical thickness (20–24). Indeed, we show
that cortical thickness differs systematically between the datasets
(SI Appendix, Text S1). The three different datasets also contain
different age ranges and sex distributions. Thus, they are not
aggregated in the following analyses, and we will investigate the
effect of gender and age on the parameters of the scaling
law separately.

Male and Female Brains Fold in the Same Way, Despite Differences in
Average Sizes and Folding Index. In the same age group, on average,
females have smaller brains with a smaller cerebrum volume and a
smaller total cortical surface area (17, 19, 25). We reproduced
these findings in all of our MRI-derived datasets and also show
that there are no sex differences in cortical thickness but a slight
difference in the gyrification index (At=Ae). Fig. 2 shows an ex-
ample from the HCP dataset in the age range of 22–25 years old.
We chose a very narrow age range in adulthood to eliminate the
effect of age on the results. The exposed and total surface areas
are significantly smaller in females compared with males
(P � 0.001), and the effect size is very large (Cohen’s D> 1.5)
(Fig. 2 A and B). However, there is no difference in average
cortical thickness between male and females (P= 0.59, Cohen’s
D=−0.09) (Fig. 2C). To test if both surface areas changed sys-
tematically, we also tested for differences in gyrification index. We

Fig. 1. Comparing MRI-derived human datasets with the established neu-
roanatomy dataset for mammalian brains. The scaling law for the compar-
ative neuroanatomy (Comp. neuroanat.) data across different species is
shown in gray. The gray regression line is also obtained for these data, with
a slope of 1.305. Overlaid are the human MRI-derived datasets: green for the
HCP, blue for the OASIS, and magenta for the NKI. Insets (red frame) show
the human MRI-derived data in more detail relative to the regression line of
the interspecies data. Note that the two gray dots in Left Inset are from the
previous Comp. neuroanat. dataset for humans.
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found that it varies significantly between males and females
(P � 0.001), with a moderate effect size (Cohen’s D= 0.69)
(Fig. 2D). These results essentially indicate that female brains
are slightly less folded than male brains of the same age.
To test if a single invariant relationship exists for both males

and females, despite the difference in the gyrification index, we
performed a multiple linear regression analysis with sex as a cat-
egorical variable on the same HCP dataset in the age range of 22–
25 years old. Indeed, the same scaling law is obeyed by both males
and females, with no significant differences in offset or slope (Fig.
2E). In fact, the regression lines almost overlap for the range of
the measurement. The previously observed differences between
males and females are still visible (females tend to be found near
the bottom left and males tend to be found near the top right in
Fig. 2E) but in a way that is perfectly aligned along the direction of
the scaling law. We repeated this analysis on all of the other age
groups and cohorts and come to the same conclusion (SI Appen-
dix, Text S2). In other words, despite differences between males
and females in terms of total gray matter surface areas, exposed
surface areas, and degrees of gyrification, the manner in which
these quantities change is perfectly constrained by the previously
proposed invariant relationship; both obey the same principles in
how the cortical folding occurs.
We conclude that there is a single scaling law relating cortical

average thickness, total and exposed areas, for both male and

female subjects of the same age. Thus, we will not differentiate
between sexes in the following analysis of the effect of age.

Throughout the Healthy Lifespan, the Scaling Changes in Offset but
Does Not Change in Slope. We examined the effect of age on the
scaling law, because it is also well-documented that cortical thick-
ness, total and exposed gray matter surface area, and the gyr-
ification index change with age (13, 16, 17). In terms of the scaling
law, we found no change in the slope but a systematic decrease in
the offset with increasing age (Fig. 3) in all datasets. With age,
average values additionally shift systematically (illustrated by the
black line in Fig. 3A indicating the age group average, which moves

A B

C D

E

Fig. 2. Sex differences in (A) exposed and (B) total surface area, (C) cortical
thickness, (D) gyrification index, and (E) scaling behavior. The subjects are
selected from a narrow adult age range (22–25 years old in the HCP dataset)
to exclude interaction effects with age. P values are from a two-tailed t test,
and d represents effect size measured by Cohen’s D (Materials and Meth-
ods). SI Appendix, Text S2 also repeats this analysis for other age groups and
datasets. F, female; M, male.

B

C

A

Fig. 3. Change in the scaling behavior with age. (A) Scaling law for different
age groups in the OASIS dataset using both males and females. Regression lines
are shown in the corresponding color as the age group. The age group average
is shown as a black solid line. (B) The scaling law slope estimate is shown with
95% confidence intervals for each age group for all three datasets. The solid gray
line indicates the 1.25 slope predicted by the theory. (C) Using the predicted
slope of 1.25, the average estimated offset is shown for all three datasets over
age (details are in Materials and Methods). The error bars indicate the standard
deviations. The original data for the estimated offset are shown in SI Appendix,
Fig. S3.
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in negative y direction and negative x direction) as the brain shrinks
with increasing age.
We compared the slope of all age groups in all cohorts against

each other and against the theoretically predicted value of 1.25
(Fig. 3B). Essentially, there is no difference in the slope estima-
tion, because all 95% confidence intervals of the slope overlap
with each other and with the predicted value of 1.25. One ex-
ception is the NKI age group 35–45 years old, which falls just short
of 1.25. We show that this is likely because of an uneven distri-
bution of age in the group (SI Appendix, Text S4). We also re-
peated the multiple linear regression analysis with age as a
continuous regressor and found in all datasets a significant age main
effect (in all cohorts, P � 0.001) but no age interaction effect on
the slope (in all cohorts, P> 0.01) (SI Appendix, Text S2); also, the
slope is not different to 1.25 within a 95% confidence interval.
Finally, we estimated the rate of decrease in offset with age (Fig.

3C) in the different cohorts. The estimate was obtained by assuming
a slope of 1.25 (Materials and Methods). Despite some systematic
differences between the cohorts, the evolution of the offset with age
seems very consistent across cohorts. The offset seems to decrease
rapidly between the ages of 4 and 30 years old (especially as seen
from the NKI cohort) and more gradually afterward.

In Alzheimer’s Disease, the Scaling Behavior Is Significantly Altered.
Finally, we investigated if the scaling behavior shown in the
previous sections is altered in brain diseases. Specifically, we
focused on Alzheimer’s disease, because there are known
changes in cortical thickness, total brain volume, and gyrification
(15, 26, 27). To that end, we use the publicly available Alz-
heimer’s Disease Neuroimaging Initiative (ADNI) database,
which contains a big cohort of patients and controls.
As a first step, we repeated our previous analysis of sex dif-

ferences in different age groups on the ADNI data. In the con-
trol group, as expected, we detected no difference in scaling
between males and females, but in the Alzheimer’s disease pa-
tient group, we detected significant differences in slope and/or
offset in two age groups (SI Appendix, Text S5). Hence, we per-
formed our subsequent analysis and comparison of patients vs.
controls for different sexes separately.
When we examined the slope of the regression, we found no

significant difference from the theoretically predicted slope of 1.25 in
the control male or female group (with the exception of those in the
55–64-year-old male control group, probably caused by the low
sample size of four subjects). In Alzheimer’s disease patients, we
found a significantly different slope from 1.25 in both male and fe-
males in the age group of 65–74 years old (Fig. 4A). In females, the
slope is significantly higher than 1.25 and different from the control
group. In males, the slope is significantly lower than 1.25 but not
different from the control group. To test if this slope change is
genuine, we further restricted the age range to 70–74 year olds and
detected essentially the same effect in both males and females. We
also performed a multiple linear regression with age as a continuous
regressor and sex and disease as categorical regressors. We found a
significant interaction effect of sex, disease, and sex:disease on the
slope (P= 0.002, P = 0.005, and P = 0.01, respectively), meaning
that, depending on sex and disease, the slope of regression may
change significantly. Finally, we repeated the entire analysis with a
subset of the data, where the patients and controls were age and sex
matched. The main findings highlighted here essentially stay the
same. Together, these results hint at a possible genuine slope dif-
ference between sexes, patients, and controls.
Next, we turned our attention to the offset of the scaling law,

which we showed in healthy controls to be a monotonically de-
creasing function of age. We repeated the analysis as before by
estimating the offset using the theoretically predicted slope of 1.25.
In the control group, we found that the estimated offset decreases
with age for both males and females as expected (Fig. 4B). How-
ever, we did not find the same trend in the Alzheimer’s disease

patients. The offset in the Alzheimer’s disease group starts off lower
than that in the control group but essentially stays at this level
throughout age. These observations were confirmed by performing
a multiple linear regression analysis with age as a continuous re-
gressor and sex and disease as categorical regressors (significant
main effects in age, disease, and age:disease with P � 0.001 and a
main effect in sex:disease with P= 0.031).
The most striking difference between the Alzheimer’s disease

and control groups is their difference in offset, regardless of age and
sex, most likely because of the significantly lower cortical thickness
in the Alzheimer’s disease group (SI Appendix, Text S6). Further-
more, the decrease in offset with age, seen in other healthy cohorts,
is also found in the control group but not in the Alzheimer’s disease
group. Finally, there are indications that males and females differ in
the Alzheimer’s disease group relative to each other as well as
relative to the control group in terms of offset and slope.

Discussion
In conclusion, adult healthy human cortices conform to the same
theoretically predicted relation that also seems to apply to the
full range of mammalian species. Analyzed separately, healthy
human adult MRI data from a variety of sources also fit the
predicted power law well, although different datasets have small
systematic differences in the offset parameter. Each dataset can
be further segmented by age and sex. We show that the gyr-
ification of male and female cortices of similar ages follows the
same scaling rule, although the latter is, on average, slightly
smaller and less gyrified than the former. Over different age
groups, however, we show that, although the exponents do not
vary significantly, the offset term decreases smoothly. These re-
sults suggest that the universal mechanisms that shape the
mammalian cortex continue to operate over the development of
healthy adults, and that possibly all variation across age in terms
of these coarse-grained variables may be attributed to a
monotonic change in the mechanical properties of the brain.
It is important to note that this relation between the three

coarse-grained variables, Ae, At, and T, does not fully specify the
shape of the cortex but rather, constrains it by eliminating one
degree of freedom. Thus, these values can vary significantly be-
tween healthy individuals and may change significantly with age.
However, they are constrained in their changes in such a way that
the combination AtT1=2A−5=4

e = kðageÞ remains constant for each
age (Fig. 3B).

A

B

Fig. 4. Scaling behavior in Alzheimer’s disease. (A) Slope of scaling law for
females and males for different age groups of Alzheimer’s disease patients
(AD) and healthy controls (CTRL). The vertical dashed gray lines mark the
boundaries used for the age groups. The horizontal solid gray lines indicate
the theoretically predicted slope value of 1.25. (B) Means and standard de-
viations of the estimated offset are also shown. The offset was estimated
assuming the theoretically predicted slope value of 1.25.
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Taken separately and disaggregated by age, the slopes of the
scaling laws in all of the MRI datasets agree well with the the-
oretically predicted slope of 1.25. This result is significant in
another way, because for this value and this value only, one can
scale all areas as multiples of the square of the average cortical
thickness and obtain a power law relation between an intrinsic
(At) and an extrinsic (Ae) measure of the cortical surface. The
exponent of the latter is then simply one-half the fractal di-
mension of the surface: From Eq. 1, At=T2 = kðAe=T2Þdf =2, and
df = 5=2. Thus, empirically, we would expect the human cortical
surface to scale like a fractal of dimension 2.5 for typical lengths
larger than k−1=2T (27–30).
With age, the value of k decreases monotonically, and it ap-

pears that the rate of decrease is initially (up to the early 20s)
faster. There is a range of factors that could account for this
observation. As the theory postulates, k is related to the negative
tension term of the cortical surface. Changes in k could, for
example, correlate with changes in the elastoplastic properties
of underlying white matter, or they could correspond to changes
in CSF pressure. In the literature, there is evidence of slight
changes of CSF pressure with age (31), but systematic studies are
lacking, making conclusive answers impossible at this stage. In
terms of the elastoplastic properties of the white matter, one
study systematically measured the stiffness of the white matter
using magnetic resonance elastography (MRE) and found no
changes with age (32). However, another study, also using MRE,
reported a systematic decrease in viscoelastic modulus with age
(33). Interestingly, a significantly reduced stiffness was recorded
in patients with Alzheimer’s disease (34), where we also find a
decreased k value. Altogether, both theory and observation seem
to suggest that the value of k is a function of the internal tensions
and external pressure applied to the gray matter. This hy-
pothesis is one of the key contributions that one can derive from
the scaling law. It suggests the existence of a link between me-
chanical properties of the brain and measures of brain mor-
phology. In other words, we can hope to mechanistically relate
MRI-derived measures of the brain with MRE or other me-
chanical measurements of the brain via the scaling law. To fully
accomplish this goal, however, will probably take a more fine-
grained iteration of our model of gyrification.
It is also worth noting that the change in k with age in healthy

subjects is not simply an effect of decreasing cortical thickness
(SI Appendix, Text S6) but rather, is an emergent effect from
correlated changes in all three primary variables of cortical
thickness, total surface area, and exposed surface area. Hence, k
can be understood as a new, more natural variable, which on its
own, might correlate with biologically interpretable properties of
the brain. Indeed, we also show that k might not be the only
biologically relevant new variable (SI Appendix, Text S6). This
reinterpreting of the previously proposed scaling law as a con-
straint is another contribution from this work. Even if one is not
convinced about the simplifications and assumptions that have
been made to deduce the proposed scaling law, it becomes clear
that it captures a principal direction in the data, which other
measures, such as the gyrification index, do not.
In Fig. 3, we showed that age-related changes introduced further

variance in the data, which when not accounted for, may skew the
data fit. Indeed, the direction of the age component of the variance
is toward negative x= logðAeÞ and negative y= logð ffiffiffiffi

T
p

AtÞ.
These results might explain the previously found statistically
significant difference between the theoretical exponent (1.25)
and empirical exponent (1.305) in the comparative neuroanat-
omy data (7). Because age was not accounted for in each species,
the variance along the direction of the age-related change might
incorrectly lead to a regression that gives a higher slope than
expected. Similarly, it would be interesting to investigate the
interspecies variation for other nonhuman species and check how
much of the variability is because of variations that are intraspecific

as opposed to interspecific. If humans are typical, we may very well
verify that there is more of the former than the latter, which would
be truly remarkable. Similar to analogous studies on the source of
variance in cortical area (35, 36), such a comparison might also hint
at the evolutionary source of the variability.
In Alzheimer’s disease, we show a slope significantly different

from 1.25 in the data for a subset of subjects. There are several
potential reasons for this deviation. It could be a genuine effect
in that the slope is altered compared with the healthy brains, in
which case the proposed theory breaks down and cannot provide
any more insight. A more fine-grained analysis might be needed
in this case to determine what the alterations are in Alzheimer’s
disease. However, we might also be lumping a heterogeneous
cohort of subjects (e.g., different in disease severity, duration,
time from onset, and recruitment center) together in one group.
Independent of this point, the systematically low values of k,
comparable with those of very old healthy cortices, tentatively sug-
gest that the main morphological effect of Alzheimer’s disease is
akin to a premature aging of the cortex.
More generally, in this work and previous works, we used

coarse-grained measures for an entire hemisphere. Thus, strong
regional variations in, for example, cortical thickness may skew
the data away from theoretical predictions. Future work could
extend the model to incorporate more fine-grained variables,
such as the systematic differences in cortical thickness between
gyri and sulci. Similarly, the segmentation of a hemisphere into,
for example, lobes might yield additional regional insight. This
approach may be particularly useful in the study of diseases that
affect different cortical regions differently.
We would also like to note that the term “universality” refers

specifically to the universality of the scaling exponent. A key
contribution of this study is that we have shown that the offset in
the scaling law is not universal and that it indeed changes with
age. One question that arises is if other measures could also show
universal properties. For example, the gyrification index (At=Ae)
has been shown to be a useful measure in detecting subtle
changes in cortical folding (37). However, we show in SI Ap-
pendix, Text S6 that the gyrification index does not appear to
capture the trend in the data in a universal manner. Additional
studies are needed to show if any other biologically interpretable
measures also show universality.
There are also important caveats to the claim of universality in

the scaling law. Even for similar age groups, there is, of course, still
some residual variation for the value of the offset around the
predicted “universal” value. This residual variation indicates that
there may be other neglected processes influencing the cortical
geometry. The theoretical model that we use to predict the slope is
a coarse-grained approximation that relies on a number of sim-
plifying assumptions. The fact that it manages to capture so much
of its morphological outcome in such a simple framework is re-
markable, but it cannot be regarded as a full or final description.
Finally, we would like to highlight that our proposed scaling law

relationship, although simple in nature, is highly meaningful and
not a mere linear regression analysis. Such as other studies, our
model also directly addresses the underlying mechanisms through
its assumptions. Where other studies choose to test assumptions
through simulations to recreate a cortex that is then compared with
the shape of the brain (bottom-up approach), we test our as-
sumptions through derivations of properties that should be fulfilled
given the assumptions (top-down approach). In our case, such a
property is a relation between three (hitherto independent) mor-
phological variables. The relation is derived from a theoretical
model with a single free parameter (k), and it was then verified
empirically, with exponents that were very close (comparative
neuroanatomy) or statistically the same (human MRI) as the
expected values. To our knowledge, no other proposed mechanism
has either predicted this regularity or generated it numerically in
simulations. Nevertheless, the fact remains that the field is split
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between competing gyrification models and approaches (1), each
of which may explain some but not all of the features of cortical
morphology. We believe that the bottom-up and the top-down
approaches are, in fact, complementary and that only when they
are successfully combined will a more complete and detailed
model emerge.

Materials and Methods
Data Sources and Processing. We used four publicly available datasets in this
study. The HCP dataset has been obtained from the 500 subjects release from
the HCP (38). The OASIS data have been obtained from the Open Access
Series of Imaging Studies Project. We used the cross-sectional dataset (39)
and only included the subset of healthy subjects. The NKI data (40) have
been obtained from the NKI Rockland Sample. The ADNI data have been
obtained from the ADNI. We included subjects from the “ADNI1,” the “ADNI
GO,” and the “ADNI2” cohorts (41) and selected all 3-T sessions. More details
for all of the datasets, including where our derived data are available for
download, can be found in SI Appendix, Text S7.

Because we only used publicly available datasets, no informed consent
procedure was required. We confirm that we complied with all of the data
use policies of each of the datasets that we used.

For all datasets, we used Freesurfer for processing. We ran the Freesurfer
recon-all pipeline on all subjects in the NKI and the ADNI datasets. For the HCP
dataset, we used the preprocessed package provided by the HCP, which
already includes the Freesurfer subjects. Details regarding the preprocessing
can be found in ref. 38. For the OASIS dataset, we used the Freesurfer
subjects provided.

To find the exposed surface, we ran the local gyrification pipeline in
Freesurfer with the standard settings and used the surfaces *h.pial-outer-
smoothed produced by that pipeline.

We then calculated the cortical thickness and total and exposed surface
areas from the Freesurfer outputs; details can be found in SI Appendix,
Text S7.

Statistical Analysis. To test for differences in surface area, cortical thickness, and
gyrification index, we used t tests to determine the P value. To determine
effect size, Cohen’s D was used: D=m2 −m1=s, m1,m2 being the means of the

two groups to be compared; s=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn1 − 2Þ× s21 + ðn2 − 1Þ× s22=n1 +n2 − 2

q
, with

n1,n2 as the sample size for each group, and s1, s2 is the standard deviation for
each group.

To determine differences in the scaling law between sex or age groups, we
used multiple linear regression with sex or age as a categorical variable. We
report P values for the main and interaction effects.

Offset Estimation. To estimate the offset in the scaling law, we decided not to
use a regression-based approach, because the estimates for offsets can vary
widely with small changes in the slope. Instead, we chose an alternative
approach.

Assuming a linear relationship with the slope of 1.25 as predicted by the
theory, we can rewrite the relationship y = 1.25x + c as c= y − 1.25x. Here,
x = log10ðAeÞ, y = log10ðAt

ffiffiffiffi
T

p Þ, and c= logðkÞ is the offset for each pair of
values of x and y.
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