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Abstract Local field potentials (LFPs) sampled with

extracellular electrodes are frequently used as a measure of

population neuronal activity. However, relating such

measurements to underlying neuronal behaviour and con-

nectivity is non-trivial. To help study this link, we devel-

oped the Virtual Electrode Recording Tool for

EXtracellular potentials (VERTEX). We first identified a

reduced neuron model that retained the spatial and fre-

quency filtering characteristics of extracellular potentials

from neocortical neurons. We then developed VERTEX as

an easy-to-use Matlab tool for simulating LFPs from large

populations ([100,000 neurons). A VERTEX-based sim-

ulation successfully reproduced features of the LFPs from

an in vitro multi-electrode array recording of macaque

neocortical tissue. Our model, with virtual electrodes

placed anywhere in 3D, allows direct comparisons with the

in vitro recording setup. We envisage that VERTEX will

stimulate experimentalists, clinicians, and computational

neuroscientists to use models to understand the mecha-

nisms underlying measured brain dynamics in health and

disease.

Keywords Local field potential � Computational

modelling � Gamma oscillation � Macaque � Neocortex �
Microconnectome

Introduction

Many measurement techniques have been used to study

neuronal dynamics, including optical imaging methods

(voltage-sensitive dye imaging, calcium imaging, intrinsic

signal optical imaging), intracellular electrode recordings

of individual neurons, and extracellular recordings using

single or multiple electrodes (Brette and Destexhe 2012).

While each modality provides some information about the

system’s dynamics, it is not always clear how this infor-

mation is related to the underlying neuronal activity.

Intracellular recordings are easiest to interpret because of

the strong theoretical foundations of cellular neurophysi-

ology that have arisen over many decades (Johnston and

Wu 1995), but the theory linking measurements made by

many other methods to neuronal activity are lacking. This

deficit in theory, combined with the increasing use of dif-

ferent recording techniques to sample from ever larger
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neuron populations, has stimulated the idea of ‘‘modelling

what you can measure’’ (Einevoll et al. 2012) to help fill

these theoretical gaps.

We aim to contribute to this effort by modelling the

measurements made by multi-electrode arrays (MEAs).

MEAs record extracellularly, and allow the simultaneous

measurement of local population activity across many

network locations, providing information about the spatio-

temporal properties of network dynamics (Le Van Quyen

and Bragin 2007; Buzsáki 2004; Rubino et al. 2006). Such

arrays can be used both in vitro (Simon et al. 2014) and

in vivo, including in humans, where applications include

recording from epilepsy patients for precise localisation

and investigation of epileptic foci (Schevon et al. 2009,

2012), and for use in brain machine interfaces (Maynard

et al. 1997; Andersen et al. 2004). These diverse applica-

tions make understanding the link between MEA record-

ings and the underlying neuronal dynamics particularly

important.

To study this link, we have created the Virtual Electrode

Recording Tool for EXtracellular potentials (VERTEX).

VERTEX is implemented in Matlab (Mathworks Inc.,

Natick, MA, USA), and makes use of established theory of

extracellular potential generation, combined with modern

simulation methods and developments in simplified neuron

modelling to simulate local field potentials (LFPs) from

large neuronal network models encompassing more than

100,000 neurons. As most such models implement single-

compartment neurons and may not include spatial infor-

mation (e.g. Izhikevich 2006; Lumer et al. 1997; Potjans

and Diesmann 2012), the LFP can only be estimated by

some proxy that will not necessarily preserve the spatial

and frequency-scaling features of real LFPs (Einevoll et al.

2013). VERTEX helps to address this issue by simplifying

the specification of spatially organised cortical network

models, and implementing simplified compartmental

models that are computationally inexpensive to simulate,

but also preserve the spatial and frequency-scaling prop-

erties of LFPs elucidated by previous modelling studies

(Einevoll et al. 2013; Łęski et al. 2013; Lindén et al. 2010,

2011).

To illustrate how VERTEX can be used in conjunction

with MEA experiments, we implemented a model of a

neocortical slice exhibiting persistent gamma oscillations

under bath application of the glutamate receptor agonist

kainic acid in vitro. The model is designed to reproduce the

spiking activity of individual neurons during a persistent

gamma (30–80 Hz) frequency oscillation, with the neuro-

nal membrane currents driven by the resulting synaptic

activity generating the extracellular potential (Nunez and

Srinivasan 2006). The persistent gamma frequency oscil-

lation model has several advantages for our investigation.

First, the theory of how neocortical persistent gamma arises

in vitro, and how individual neurons participate in the

network oscillation, has been comprehensively docu-

mented (Ainsworth et al. 2011; Whittington et al. 1995,

2011; Fisahn et al. 1998; Buhl et al. 1998; Draguhn et al.

1998; Roopun et al. 2008; Cunningham et al. 2003; 2004a;

Traub et al. 2005a, b; Pafundo et al. 2013; Bartos et al.

2007). Second, the slice preparation ensures that all syn-

apses are local, so MEA recordings are influenced only by

the local circuit dynamics and not by input from other

areas. The slice edges provide natural spatial boundaries

for what needs to be included in the simulation. Third,

synaptic currents rather than intrinsic active membrane

currents drive neuronal firing in persistent gamma, so the

previously developed theory of LFP generation in passive

neurons (Lindén et al. 2010, 2011; Pettersen and Einevoll

2008) can be used without modification.

Using VERTEX, we have created the first model of

neocortical networks that not only reproduces experimen-

tally observed spike patterns, but also produces a bio-

physically meaningful LFP signal. To illustrate VERTEX’s

potential for use in conjunction with experimental data, we

directly compared the LFPs generated by the model with

those recorded by an MEA in macaque temporal neocortex

in vitro, allowing us to identify future research directions to

address discrepancies between the theoretically predicted

and experimentally observed LFPs.

Results

Overview

We developed the VERTEX simulation tool for simulating

LFPs produced by large ([100,000) populations of neu-

rons. We first investigated a suitable neuron model for

generating LFPs from such populations while remaining

computationally tractable. To illustrate VERTEX’s capa-

bilities, we used it to position populations of these neuron

models into a neocortical slice arrangement, with neuron

positions constrained by cortical layer and slice boundaries,

and connected them according to current knowledge about

the local anatomy of neocortical circuits (Binzegger et al.

2004). We simulated a persistent gamma frequency oscil-

lation in the network, using a simplified model of spike

generation in each neuron to generate the network

dynamics (Brette and Gerstner 2005). Finally, we com-

pared the simulated LFPs to experimental MEA recordings

from macaque temporal neocortex.

LFP generation

The extracellular potential at a point in brain tissue is given

by the sum of all neuronal membrane currents, weighted by
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their distance from the point (Nunez and Srinivasan 2006)

assuming constant tissue conductivity (Logothetis et al.

2007; Nicholson and Freeman 1975). Recent theoretical

studies have shown that the spatial and frequency-scaling

properties of the LFP are affected by the particular spatial

arrangement of neurons’ dendrites (Lindén et al. 2010,

2011). We therefore looked for a reduced compartmental

model that would generate extracellular potentials captur-

ing the spatial and frequency-scaling properties elucidated

by Lindén et al.’s investigations using detailed cell

reconstructions, while remaining computationally tractable

to simulate in large numbers.

The reduced compartmental model should create a

similar spread of currents across its compartments to an

equivalent morphologically reconstructed neuron given the

same input. A compartment’s membrane current depends

on the neuron’s axial resistance as well as on its membrane

resistance and capacitance. We therefore chose a reduced

model that conserved these quantities, while containing a

minimal number of compartments. The compartmental

reduction method of Bush and Sejnowski (1993) fulfils

these requirements, producing compartments with a length

equal to the mean length of the compartments they are

representing in the full model. This creates a reduced

model of the same length as the original reconstruction, but

with a smaller membrane area, smaller lateral spread of the

dendrites, and fewer than ten compartments (Online

Resource, Fig. ESM2).

Validating the reduced LFP generation model

We tested the effects of this reduction on the generated

LFP by reproducing the experiments detailed by Lindén

et al. (2011). Ten thousand model neurons with passive

membrane dynamics and the same morphology were

positioned randomly within a 1-mm radius cylinder, with

uniform spatial distribution and constant soma depth. One

thousand synapses (excitatory, current-based, single-expo-

nential type with time constant 2 ms and fixed amplitude

50 pA) were placed randomly on the compartments of each

neuron, with uniform density with respect to membrane

area. Each synapse received an independent Poisson spike

input train with a rate of 5 Hz. LFPs were calculated at the

centre of the population, at five depths. The magnitude of

an LFP signal was defined as its standard deviation. The

LFP range was calculated by varying the population radius

from 0 to 1 mm and measuring the radius at which the LFP

magnitude reached 95 % of its value at the maximum

1-mm radius (Lindén et al. 2011). We repeated this pro-

cedure for the three neuron types used by Lindén et al.:

layer 2/3 (L2/3) pyramidal, layer 4 (L4) spiny stellate, and

layer 5 (L5) pyramidal. We compared LFPs generated by

the morphological reconstructions of these neuron types

described by Mainen and Sejnowski (1996)—hereafter

referred to as Mainen cells—with the LFPs from reduced

versions of these models created using Bush and Sejnow-

ski’s method (1993)—hereafter referred to as Bush cells.

The results of these experiments are shown in Fig. 1.

For each neuron type, the LFP range and magnitude in each

layer for the population of Bush cells are close to those for

the population of Mainen cells. The LFP range is smallest

in the soma layer (\250 lm) with the range increasing in

the layers above and below the soma, while the LFP

magnitude is largest in the soma layer and decreases in the

layers above and below the soma. The differences between

the results for the L4 spiny stellate models are small, so we

concentrate on the pyramidal neuron population results.

For the L2/3 pyramidal neurons, the LFP spatial range in

the soma layer is very similar between the Bush and

Mainen populations, but above and below this layer the

discrepancy increases, with the largest difference of

200 lm in L1. The range differences in all other layers are

B110 lm. For the L5 pyramidal neurons, the LFP spatial

range difference is again smallest in the soma layer, and

\100 lm in layers 4 and 1. The largest difference is

320 lm in L2/3.

To see how important these discrepancies were within

the context of the general biological variability of neuronal

morphology, we repeated the simulations with neuron

populations containing pyramidal cells reconstructed from

several different real neurons. These were downloaded

from the NeuroMorpho.Org database (Ascoli et al. 2007)—

further details on the models we used are provided in the

Online Resource (Table ESM10). We used ten further

groups of L2/3 cat pyramidal neurons, and one further

group of L5 cat pyramidal neurons (this was the only other

cat L5 pyramidal neuron currently available in the data-

base; we did not use L5 pyramidal cells from other species

as the size differences in neurons between species could

have provided misleading results). The results of these

simulations are plotted in Fig. 1b as light-red dashed lines

for the extra L2/3 pyramidal populations, and light blue

circles for the extra L5 pyramidal population. The extra

simulation results show that the LFP range and magnitude

in the Bush neuron populations generally fall within a

biologically reasonable range; while the reduced models

are not ideal substitutes for the morphological reconstruc-

tions, the errors incurred by the reduction method are

similar to those introduced by neglecting morphological

diversity in reconstructed neuron model populations. The

general profile of the LFP across the layers, at least, is

preserved adequately.

We also checked the power spectra of the simulated

LFPs to make sure the Bush model populations reproduced

similar frequency-scaling properties to the Mainen cell

populations. Figure 1c shows that, in each layer, the 95 %

Brain Struct Funct

123



confidence intervals for each model type overlap over the

range of frequencies from 2 to 450 Hz (the overlap con-

tinues down to 1 Hz; this is not shown to improve the plot

resolution at higher frequencies).

The results in Fig. 1 were generated using uncorrelated

synaptic inputs over the entire dendritic tree of each neuron

in each population, with neurons all positioned at the same

height in their respective layers. This simplified setup was

used so that a comparison could be made with the results

previously reported by Lindén et al. (2011), but we also

wanted to check whether the reduced models would still be

suitable approximations to use for a more realistic situation,

with neurons placed at varying depths within their layer,

receiving correlated inputs. As our particular interest was

simulating network gamma oscillations, in which pyramidal

neurons receive highly correlated inhibitory synaptic input

to their perisomatic regions, we repeated the previously

described experiments measuring the LFP magnitude and

range, but positioned each neuron’s 1,000 synapses onto its

soma compartment [we only repeated the simulations for the

pyramidal neuron morphologies, as the LFP spatial profile

for the spiny stellate cells was shown not to change signif-

icantly with correlated input (Lindén et al. 2011)]. In the

previous experiments with no correlations between synaptic

inputs, each synapse was assigned an independent Poisson

spike train, for a total of 10,000 9 1,000 = 107 independent

spike trains at 107 synapse locations. To introduce input

correlations, we followed the same method as Lindén et al.

(2011). Each synapse in the model was now assigned a spike

train drawn without replacement from a finite pool of pre-

generated spike trains. By reducing the number of Poisson

spike trains in the pool so that some synapses shared a

common input pattern, we could control the level of input

synchrony to the neurons. The resulting input correlation is

Fig. 1 Comparison of simulated LFPs from the Bush and Mainen

cell models. Top (red) L2/3 pyramidal neuron, middle (green) spiny

stellate cell (morphology also used for interneurons), bottom (blue)

L5 pyramidal neuron. a Comparison of original and reduced multi-

compartment models of each neuron type. b Range and magnitude of

simulated LFPs. Circles show values for the original cell reconstruc-

tion populations, triangles for the reduced neuron model populations.

Light red dashed lines in the top panel and light blue circles in bottom

panel show values for the extra cat pyramidal neurons tested, as

described in the main text. All y-axis values in lm. c Overlap of the

95 % confidence intervals for the estimated LFP power spectra

produced by each population in each layer shaded dark. Non-

overlapping sections of the 95 % confidence intervals are shaded

light. Power is plotted in dimensionless, normalised units for ease of

comparison
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given by the total number of synapses per neuron divided by

the number of independent spike trains (Łęski et al. 2013).

To simulate highly correlated input, we used 2,000 inde-

pendent spike trains, resulting in an input correlation of

1,000/2,000 = 0.5 (i.e. any two neurons share on average

1,000 9 0.5 = 500 common input spike trains).

For these simulations, we also introduced random vari-

ability in the soma depth of the neurons. We distributed L2/

3 pyramidal neuron somas between -334 and -534 lm,

and L5 pyramidal neuron somas between -970 and

-1,170 lm from the cortical surface. These ranges ensured

that the neuron somas remained within the correct layer

boundaries, and that their apical dendrites were not posi-

tioned above the cortical surface.

Figure 2 shows the spatial profiles of the LFP for the

different populations. In these simulations, we measured the

LFP at 50 intervals, to see how well the Bush models pre-

served the LFP at this level of detail. We used 11 electrode

points in L1 and L2/3 for the L2/3 populations, and 26

electrode points spanning all layers for the L5 populations.

Both the range and magnitude profiles show that the LFP

from the Bush population matched the LFP from the Mainen

population well, again within the bounds of the LFP profile

of the extra comparison populations. The minimum range

and magnitude in the L2/3 populations are just above the

minimum soma depth, and a few 100 lm above the mini-

mum soma depth in the L5 population. This depth is where

the synaptic currents at the soma are approximately balanced

by the opposite return currents in the dendrites; below and

above this minimum point, the somatic or the apical den-

dritic currents dominate the LFP signal, respectively. These

simulations also show substantial overlap of the 95 % con-

fidence intervals for the power spectra at each electrode

(Fig. 2b). The biggest discrepancy between the LFP power

spectra for each model occurs around the level of the LFP

range minimum. The LFP power up to 100 Hz is reliably

reproduced at every measurement point, and up to 450 Hz at

all but one point with the L2/3 populations. This point

corresponds to the point at which the LFP range and mag-

nitude are lowest. The reduced accuracy at higher

Fig. 2 Comparison of simulated LFPs from the Bush and Mainen

cell models for highly correlated input at the soma compartment. Top

(red) L2/3 pyramidal neurons, bottom (blue) L5 pyramidal neurons.

a Range and magnitude of simulated LFPs. Bright red/blue lines show

range and magnitude values for the Mainen cell populations, dark red/

blue lines show range and magnitude values for the Bush cell

populations. The faded red/blue dashed lines show these values for

the additionally tested cell populations in L2/3 and in L5. Grey

dashed lines show layer boundaries, black solid lines show the

maximum and minimum soma depths. All y-axis values in lm.

c Overlap of the 95 % confidence intervals for the estimated LFP

power spectra produced by the L2/3 and L5 pyramidal neuron

populations at each electrode location shaded dark (correlated input at

soma). Non-overlapping sections of the 95 % confidence intervals are

shaded light. Power is plotted in dimensionless, normalised units for

ease of comparison. Comparisons for only 13 out of the 26 LFP

measurement points for the L5 populations are shown for ease of

visualisation
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frequencies in the L5 models should be taken into account if

frequencies above 100 Hz are analysed in models containing

L5 pyramidal cells.

Our results suggested that we could use the reduced

neuron models in VERTEX simulations with some confi-

dence that the resulting simulated LFPs would be close to

LFPs simulated from equivalent morphologically recon-

structed neurons, in magnitude, spatial extent, and fre-

quency content.

The VERTEX simulation tool

To simulate large networks, we wrote custom Matlab

software to setup neuron populations, position them, con-

nect them together, and simulate their dynamics and the

resultant LFPs. We designed this simulation tool to be

easily adaptable to create models of any layered brain

tissue containing populations of spiking neurons (Fig. 3).

Model parameters are specified by the user in Matlab

structures, defining:

1. Neuron group properties (for each group: the neurons’

compartmental structures, dimensions and positions,

electrotonic properties, spiking model parameters)

2. Connectivity (for each presynaptic group: number of

efferent synapses per layer per postsynaptic group,

allowed postsynaptic compartments to connect to

contact, axonal conduction speeds, neurotransmitter

release times, synapse dynamics)

3. Tissue properties (dimensions, layer boundaries, neu-

ron density, tissue conductivity)

4. Recording settings (IDs of neurons to record intracel-

lularly, extracellular electrode positions, sampling rate)

5. Simulation settings (simulation length, time-step,

number of parallel processes)

A model is initialised by positioning the specified

number of neurons from each group within the slice and

layer boundaries, pre-calculating distances from the neuron

compartments to the virtual electrodes, generating each

neuron’s connections based on its position, axonal arbori-

sation extent in each layer, and expected number of

efferent connections, and initialising the synapses (see

‘‘Experimental Procedures’’). At this point, the initialised

model can, optionally, be saved to disk as MAT files.

Functionality to export to NeuroML (Gleeson et al. 2010)

is currently under development.

When the simulation is run, recordings (intracellular,

LFPs, spike times) are automatically saved to disk at user-

specified time intervals. The simulation run can be per-

formed in serial or parallel (requires Matlab Parallel

Computing Toolbox). After the simulation is finished, these

files are loaded and recombined for analysis. Our design

allows the model to be used with minimal programming

knowledge, though as Matlab is a high-level, interpreted

language, more experienced programmers can make mod-

ifications relatively easily.

Simulation speed and memory usage

While Matlab code may run more slowly than equivalent

code in compiled programming languages, performance

can be dramatically improved through code vectorisation,

which minimises the impact of code interpretation over-

heads (Brette and Goodman 2011). The Matlab Parallel

Computing Toolbox allows further performance

improvements by providing a simple way to parallelise

computations on multicore computers or over networks.

These factors, as well as its ease of use, popularity in the

neuroscience community, the ability to perform simula-

tions and analysis in the same environment, and the well-

developed interface for integrating C or Fortran functions

for future performance enhancements influenced our

decision to write VERTEX in Matlab. To give the user an

idea of the performance improvement over using the other

current extracellular potential simulation tool LFPy

(Lindén et al. 2014)—a Python package for simulating

extracellular potentials with NEURON (Hines and Car-

nevale 1997; Hines et al. 2009)—we performed equivalent

simulations using layer 5 Bush pyramidal neurons in LFPy

and in VERTEX (no synapses, one random fluctuating

current per neuron, 0.03125 ms step size and 32 000 Hz

sample rate). LFPy took *278 min to simulate the LFP

from 10,000 neurons at 50 electrode points, while VER-

TEX running in serial mode took *18 min to simulate

the LFP from 10,000 neurons at 50 electrode points (both

running on an Intel Xeon E5640 2.66 GHz workstation).

While this performance improvement is important for our

purposes, it should be noted that LFPy is designed to

simulate extracellular potentials from single cells rather

than large populations. Indeed, as the code interpretation

overhead begins to dominate VERTEX’s calculation times

in small simulations, running the same model but with

only one neuron in the population took *227 s in VER-

TEX but \2 s in LFPy. VERTEX is also not suited to

running models containing neurons with very many

compartments, because the Runge–Kutta integration

method becomes unstable as the number of compartments

increases (though we aim to address this limitation by

implementing implicit integration methods in future

releases). LFPy, therefore, remains the superior tool for

modelling extracellular potentials around single neurons,

while VERTEX’s strength lies in simulating LFPs in

large-scale networks.

To show how performance improves in parallel mode,

we compared the run times for two network models, one

large (123,517 neurons with on average 1,835 synapses per
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neuron) and one small (9,881 neurons with on average 256

synapses per neuron), using VERTEX on a single multi-

core computer (Fig. 4). Each model contained two popu-

lations: layer 5 pyramidal (P5) neurons and layer 5 basket

(B5) interneurons. Spike rates in each small model (large

model) simulation were *6 Hz (*7 Hz) and *24 Hz

(*31 Hz) for the P5 and B5 neurons, respectively. The

large model shows linear speed-up with increasing number

Fig. 3 Overview of the VERTEX simulation software. a Simulation

workflow. The user provides parameters as Matlab structures to setup

the neuron populations, position them in layers, connect them

together, and simulate their dynamics and the resultant LFPs.

Functionality to export to NeuroML is currently under development.

b Example program structure. The main simulation program only

requires calls to the initNetwork() function and the runSimulation()

function, with the information required to setup the simulation

specified in separate script files
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of cores for model initialisation and close-to-linear speed-

up in simulation time. The speed-up for the small model is

sub-linear: as the interpretation overhead for a vectorised

operation on a small matrix is the same as on a large

matrix, this overhead starts to dominate the calculation

times below a certain number of neurons (Brette and

Goodman 2011). Therefore, splitting already small neuron

state matrices between more processes does not signifi-

cantly improve performance. This limit is not reached in

larger models.

Figure 4 also shows how increasing the number of vir-

tual electrodes affects simulation speed. Model initialisa-

tion times are affected proportionally more than model run

times using more electrodes, in both large and small

models, though in the small model the proportional impact

from adding electrodes to initialisation time was greater

than in the large model. This is because the large model not

only has more neurons, but also more synapses per neuron.

The increase in time spent connecting the neurons is pro-

portional to the number of synapses, while the increase in

time spent calculating constants for the LFP measurements

is proportional to the number of compartments (roughly

proportional to the number of neurons).

The size of the simulated network is limited by the

amount of RAM available. As an example, we tested

scaled configurations of our neocortical slice model

(described below) using single-core and multi-core com-

puters: an iMac with 4 GB RAM supported a serial

simulation with *25,000 neurons, a 16 GB Linux

machine supported a simulation of *100,000 neurons in

both serial and parallel modes, and our Linux server with

120 GB RAM supported a simulation of *700,000 neu-

rons. In addition to increasing the memory on a single

machine, VERTEX could be run across a network of

computers using the Matlab Distributed Computing Ser-

ver. On a network of 16 of our 4 GB RAM iMacs, for

example, the simulation size could scale to *400,000

neurons. In summary, existing processing environments of

experimental and computational laboratories can be suf-

ficient for running detailed simulations of brain tissue

activity.

Spike import

Network dynamics can be simulated directly by providing

the model neurons with a spiking mechanism—we used the

adaptive exponential (AdEx) mechanism (Brette and

Gerstner 2005), which we include in VERTEX. Alterna-

tively, previously generated spike times (output from

another simulator, for example) can be imported into the

simulation. The neurons whose spike times are imported

are then specified with purely passive membrane dynamics.

We used the spike import feature to run the control

experiment to confirm that the AdEx spiking mechanism

has a negligible impact on the simulated LFP (Online

Resource, Fig. ESM1).

Fig. 4 Parallel simulation

performance with increasing

numbers of Matlab workers (i.e.

parallel processes). Top row

model initialisation times for

a the 9 881 neuron model and

b the 123,517 neuron model.

Bottom simulation times for 1 s

of biological time for c the

9,881 neuron model and d the

123,517 neuron model. Thick

black lines indicate linear speed

scaling; legends indicate the

number of electrodes used in

each simulation run. The sub-

linear speed-up in the small

model is due to the decreasing

relative performance influence

of code vectorisation for smaller

matrices (see ‘‘Results’’)
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Running models using imported spike times is similar to

the approach used by Lindén et al. (2011) to link spiking

output from a cortical model implemented in the NEST

simulator (Gewaltig and Diesmann 2007) to their LFP

generating model implemented in LFPy. However, we

consider imported spikes to have been emitted by neurons

from within the population we are modelling; imported

spikes are delivered to target neurons according to the

generated connectivity matrix rather than pre-assigned to

postsynaptic targets. By contrast, Lindén et al. (2011) con-

sidered the spikes from NEST-simulated neurons as external

inputs to the neurons in the LFPy simulation, so they were

delivered to synapses without a connectivity model within

the LFPy-simulated population. The practical effect of this is

that our software is better suited to modelling the LFP

resulting from intrinsic network dynamics, when connec-

tivity is known or when different spatial connectivity models

are to be tested. Input from external populations can be

simulated by specifying a population of single-compartment

neurons and setting this population’s output using the spike

import functionality. As single-compartment neurons do not

contribute to the extracellular potential (Pettersen et al.

2012), VERTEX ignores them in its LFP calculations. This

population can, therefore, be considered as providing

‘‘external’’ input from a distant population.

Neocortical slice model

To demonstrate the capabilities of VERTEX for simulating

LFPs in large neuron populations, we created a neocortical

slice model to use in conjunction with MEA experiments

in vitro (Fig. 5). The model comprises fifteen neuron

groups, defined in Table 1. It is designed to contain a

similar number of neurons to the comparison experimental

slice. This was calculated to be 175,421 neurons, based on

the slice dimensions and neuron density. The slice has

clear spatial boundaries: neurons cannot be positioned

outside of the slice edges, and axons cannot ‘wrap around’

these boundaries. We therefore required a connectivity

model that would produce a suitable number of synapses

given the large number of neurons, and that took into

account each neuron’s position in relation to the slice

boundaries. We used anatomical data from Binzegger et al.

(2004) to specify the numbers of connections between

neuron groups, and a 2D Gaussian spatial profile to model

the decay in connection probability with increasing dis-

tance from a presynaptic neuron (Hellwig 2000). The

standard deviation parameter of the Gaussian profile was

set using axonal arborisation radius measurements reported

by Blasdel et al. (1985); Fitzpatrick et al. (1985), as

adapted by Izhikevich and Edelman (2008). These were

different for each neuron group in each layer (see Online

Resource, Table ESM4). Finally, we modelled the effect of

slice cutting on connectivity by reducing the number of

connections a presynaptic neuron could make by the pro-

portion of the integral of its Gaussian connectivity profile

that fell outside the slice boundaries (Eq. 3). The con-

nectivity generation code in VERTEX implements this

connectivity model automatically, though the user can also

specify a uniform spatial connection probability and/or

Fig. 5 Slice model structure and individual neuron dynamics.

a Layer boundaries are given in lm. Subsets of soma locations from

each neuron group are shown in faded black for excitatory neurons, or

faded magenta for inhibitory neurons. Triangles represent pyramidal

neuron somas, stars are spiny stellate cell somas, circles are basket

interneuron somas and diamonds non-basket interneuron somas. One

example full cell is shown for each neuron group, in solid black for

excitatory neurons or solid magenta for inhibitory neurons.

Compartment lengths are to scale; compartment diameters are not.

Black circles are virtual electrode positions (first 8 rows shown).

b Responses to step-current injections into the soma compartment of

each neuron type. Spikes are detected and cut-off at Vt ? 5 mV; we

extend the spike trace up to ?10 mV for illustrative purposes. Step-

current magnitudes were 0.5 nA for the P2/3 neuron, 0.333 nA for the

SS neuron, 1.0 nA for the P5 neuron, 0.75 nA for the P6 neuron, and

0.4 nA for the B and NB interneurons
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ignore slice cutting effects. VERTEX also allows users to

specify specific target compartments on postsynaptic

neurons that presynaptic neurons are allowed to connect to.

We used this feature to incorporate known details about

the dendritic regions targeted by different presynaptic

neuron types—basket interneurons only make connections

with pyramidal cell somas and their two adjacent com-

partments, for example. We used a similar pattern of

connectivity to that described by Traub et al. (2005b);

details are provided in the Online Resource (Supplemen-

tary Methods: Connectivity and Table ESM7). Incorpo-

rating this detail into the model is important, as the

locations of synaptic inputs onto the neurons will affect the

locations and sizes of the currents that contribute to the

simulated LFP.

Figure 6 shows the number of connections between

neuron groups compared with the original numbers speci-

fied by Binzegger et al. (2004). The proportional reduction

in synapses is not the same for each connection type

because of the varying axonal arborisation radii. These

reductions are important to consider when assessing the

effect of connectivity changes on dynamics, but they

illustrate that the general profile of connections between

neuron groups is not substantially altered—connections

from P2/3 to P2/3 and P5 neurons remain the most

numerous, for example. Modelling thinner slices, or dif-

ferent axon arborisation profiles, could lead to the over- or

under-representation of particular connections in the

model.

Modelling persistent gamma oscillations

To make a comparison with experimental data, we gener-

ated a persistent gamma oscillation in the model by

applying random currents to all neurons (Börgers and

Kopell 2005), and adding an AdEx spiking mechanism to

the somatic compartments (see Online Resource). In slice

experiments with nanomolar kainate concentrations, this

activity regime is driven by L2/3, where neurons receive

noisy excitatory drive from the excited axonal plexus of

L2/3 pyramidal neurons (Ainsworth et al. 2011; Cunning-

ham et al. 2003, 2004b). We simulate this by providing a

relatively large noisy current to P2/3 neurons, similar to

Ainsworth et al. (2011); Börgers and Kopell (2005). We set

synaptic strengths (based on Traub et al. 2005b) and noise

currents to match the spiking activity and observed mem-

brane potential fluctuation sizes reported in previous

studies in vitro. Model parameters are given in tables

ESM1–ESM9.

As described in previous experiments (Ainsworth et al.

2011; Cunningham et al. 2003, 2004b; Traub et al. 2005a,

b), P2/3 neurons spike infrequently, while B2/3 neurons

spike on most oscillation periods. Excitatory neurons in L4

do not take part in the oscillation (though still spike

infrequently), while L4 interneurons are weakly entrained

to the oscillation. In addition to the L2/3 gamma, the

comparison slice exhibited increased gamma power in part

of the infra-granular layers (see Fig. 9a, electrodes 6, 7, 16,

17, 26, 27), presumably caused by L5 as described by

Ainsworth et al. (2011). We therefore used a relatively high

coupling strength of P5 to B5 and NB5 neurons and a

larger noisy drive current to L5 neurons to enable the L2/3

gamma to generate gamma in L5. The L5 gamma oscilla-

tion also weakly entrained L6 neurons to the oscillation.

The resulting spiking behaviour is shown in Fig. 7,

which shows a spike raster for 5 % of the neurons in the

model, along with example somatic membrane potential

traces for each neuron group. The spike raster reveals that

neurons near the slice x-boundaries (neurons nearest the

cyan boundary markers in Fig. 7) are less strongly

entrained to the oscillation than neurons in the centre of the

slice, because they receive fewer inhibitory inputs than

more central neurons (neurons closer to the edge of the

slice have more connections removed by slice cutting than

those towards the middle of the slice, because they lose

proportionally more of their axonal arborisation).

Table 1 Neuron groups,

abbreviations, and number of

compartments within our model

Basket interneurons are in L2/3,

L4, L5 and L6. Non-basket

interneurons are in L2/3, L4 and

L5. Compartmental structures

are shown in Fig. ESM2
a Proportions given for the

whole model rather than per

layer; proportions per layer are

given in Table ESM3

Abbreviation Neuron group description Proportion of total

model (%)

Compartments

P2/3 Pyramidal neurons in layer 2/3 (L2/3) 27.4 8

SS4(L4) Spiny stellate neurons in L4 projecting to L4 9.7 7

SS4(L2/3) Spiny stellate neurons in L4 projecting to L2/3 9.7 7

P4 Pyramidal neurons in L4 9.7 8

P5(L2/3) Pyramidal neurons in L5 projecting to L2/3 5.0 9

P5(L56) Pyramidal neurons in L5 projecting to L56 1.4 9

P6(L4) Pyramidal neurons in L6 projecting to L4 14.1 9

P6(L56) Pyramidal neurons in L6 projecting to L56 4.7 9

B# Basket interneurons in L# 13.7a 7

NB# Non-basket interneuron in L# 4.7a 7
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To demonstrate how the oscillation is generated by the

interaction of the excitatory and inhibitory populations, we

simulated activity in the model under four different con-

ditions: firstly the original case described above (connec-

tion weights in Table ESM5), secondly with P2/3 to B2/3

synapses reduced to 1 % of their original weight, thirdly

with B2/3 to P2/3 synapses reduced to 1 % of their original

weight, and fourthly with the original synapse weights but

increased input current to the B2/3 population (1.5 times

the mean and standard deviation used in the original sim-

ulation values given in Table ESM9). Simulation results

using these different configurations are plotted in Fig. 8,

which shows that both P2/3 to B2/3 synapses and B2/3 to

P2/3 synapses are necessary for the generation of a popu-

lation gamma oscillation in the model. Without these

connections—or with their strengths severely reduced—no

oscillation emerges. This oscillation mechanism is the

same as the ‘‘weak’’ pyramidal-interneuron network

gamma (PING) model described by Börgers et al. (2005).

Firing in a subset of P2/3 cells, which are densely con-

nected with B2/3 neurons with strong synapses, causes a

population spike from the B2/3 cells. This suppresses the

network until the P2/3 neurons that receive the most input

from the stochastic drive reach threshold. This subset of

P2/3 neurons then fires, causing another B2/3 cell popu-

lation spike, and so the oscillation continues (Börgers et al.

2005). Figure 8m–p shows that the oscillation is also

suppressed in our model when the driving current to B2/3

cells is increased, allowing them to suppress P2/3 cell fir-

ing. This is in line with the gamma suppression mechanism

Fig. 6 Changes in connectivity between neuron groups after slice

cutting. a Expected number of connections from population of

presynaptic neurons (columns) onto single postsynaptic neurons

(rows) before slicing, based on the data from Binzegger et al. (2004).

b Illustration of the effect of slice cutting on a presynaptic neuron’s

(light green dot) axonal arborisation (shaded area). Figure orientation

is as if looking down onto the surface of the brain, with slice

boundaries indicated by the black bounding box. Connections within

the green shaded area remain, but those in the grey shaded areas are

removed by slicing. c Connectivity in the cortical slice model, as

altered from a by slice cutting. While overall connection number

decreases (note different scale bars), some connections are affected

more than others because of differing axonal arborisation sizes.

d Difference matrix showing the percentage change in number of

synapses from slice cutting
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described by Börgers and Kopell (2005). Figure 8 also

demonstrates that the gamma oscillation in layer 5 is

dependent on a gamma oscillation occurring in layer 2/3:

layer 5 gamma is suppressed in each of the cases where

layer 2/3 gamma is suppressed. Firing rates for each pop-

ulation in each case are given in Table ESM11.

Having verified that the model produced the expected

spiking output and that the gamma oscillation was being

generated by the correct mechanism, we looked at the

simulated LFPs and compared them with those recorded

in vitro. Figure 9 shows a comparison over the whole

electrode array between the model and the experimental

recordings. Figure 9a shows the shape of the experimental

neocortical slice with, as predicted by previous research,

strong gamma power in the supra-granular layers. The

gamma power at each electrode is highly variable, resulting

in a patchy power map. This is not captured by the model,

whose structure is homogeneous along the x-axis. How-

ever, the phase inversion between layer 1 and layer 2,

illustrated in Fig. 9b, c, emerges in the model (Fig. 9e, f)

from the positioning of current sinks and sources on the P2/

3 neurons during the gamma oscillation. This is in agree-

ment with the source–sink interaction mechanism of phase

inversion demonstrated experimentally in kainate-induced

gamma oscillations in entorhinal cortex in vitro (Cunn-

ingham et al. 2003). The cross-correlations between elec-

trodes shown in Fig. 9c, f also reveal how the strong

gamma oscillation in L2/3 dominates the across the elec-

trodes more than in the experimental recordings. This is,

again, a result of the relatively homogeneous activity along

the x-axis in the model, meaning that the LFP signal cre-

ated by the gamma oscillation is not degraded by influences

from the non-oscillating areas in the slice as occurs in vitro.

Our model, though not capturing all the details of the

experimentally measured network dynamics, provides a

starting point for further investigations into cortical

dynamics on this spatial scale, allowing for better inte-

gration of theory and experiment.

Fig. 7 Spike raster and

individual neuron responses

during gamma oscillation.

a Spike raster showing spiking

activity of 5 % of all the

neurons in the model (reduced

number shown for clarity).

Boundaries between neuron

groups marked in cyan. Note

strong persistent gamma

oscillation in L2/3, with weaker

oscillation in L5. b Example

soma membrane potential plots

for the various neuron types.

Most neurons fire sparsely,

while B2/3 and B5 neurons fire

on most oscillation periods.

Note occasional spike doublet

firing in the B2/3 neuron. Spikes

are cut-off at Vt ? 5 mV in the

simulation; we extend them up

to 10 mV here for illustrative

purposes. c Close-up of P2/3

neuron soma membrane

potential (cut-off-45 mV). Scale

bar 5 mV
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Fig. 8 Illustration of the gamma oscillation mechanism in the model.

a Spike raster of 250 ms from a simulation of a model with the same

parameters as that shown in Fig. 6. For clarity, spikes from only 5 %

of the neurons are shown. A gamma oscillation is apparent in layers

2/3 and 5. b Zoomed spike raster showing only neurons in layer 2/3.

Spikes from only 1 % of the neurons are shown. c LFP recording

from the virtual electrode with the highest gamma power in the LFP.

d Power spectrum of the LFP from this electrode, calculated for 1.5 s

simulation time, showing a clear gamma peak. e–h same as a–d, but

with synaptic weights from P2/3 cells to B2/3 cells reduced to 1 % of

their original value. e–f show B2/3 cell firing is greatly reduced, as

they are not receiving excitation from the P2/3 cells. No gamma

oscillation emerges. i–l same as a–d, but with synaptic weights from

B2/3 cells to P2/3 cells reduced to 1 % of their original value. B2/3

cells fire rapidly and randomly: they are driven by the P2/3 cells but

they cannot synchronise them as their synapses are too weak. No

gamma oscillation emerges. m–p same as a–d, but with the mean and

standard deviation of the stochastic input current to the B2/3 cells

increased by 50 %. P2/3 cell firing is suppressed by the increased B2/

3 cell firing, so no gamma oscillation occurs
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Discussion

We have developed the VERTEX tool for simulating

LFPs generated by large neuronal populations. VERTEX

is easily customisable, and makes use of recent devel-

opments in simulation techniques and insights from our

experiments with simplified neuron models to reduce

simulation times for LFPs generated by large networks.

To illustrate how VERTEX can be used in conjunction

with experimental MEA data, we simulated kainate-

induced persistent gamma oscillations in a large-scale

neocortical slice model. The model reproduces the

spiking activity underlying persistent gamma, and gen-

erates the theoretically predicted LFP from this activity.

We compared this simulated LFP with Utah array

recordings of persistent gamma from macaque temporal

neocortical slices. The model predicted the oscillation

phase inversion between L2/3 and L1, but not the spatial

variation in gamma power within layers, suggesting

directions for further research into the cause of the

spatial discrepancies between theoretically predicted and

experimentally measured LFPs.

Fig. 9 Comparison of experimental (a–c) and simulated (d–f) MEA

recordings. a Map of gamma frequency power across the electrode

array in vitro. Electrode positions shown as grey dots, corner numbers

indicate electrode IDs. Shaded areas show where electrodes were

discounted because they fell either outside the slice boundaries or

within the white matter. Gamma power is strongest at the top of the

slice, corresponding to L2/3. b Example experimental LFP traces

from electrodes 41–44 (indicated by grey rectangle in a). Traces have

been normalised to unit standard deviation for ease of comparison.

c Cross correlation of signals from electrodes 41–44 with signal from

electrode 42, illustrating phase inversion in the signal from electrode

41. This electrode was identified as being in layer 1 by post hoc

histology (not shown). Gamma map and cross-correlations estimated

from 18 s of data. d–f as a–c, but for the neocortical slice model

(gamma map and cross-correlations estimated from 1.5 s of simula-

tion data)
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Speed of the VERTEX simulator

Parallel computing and code vectorisation allow VER-

TEX to simulate network activity and LFPs in reasonable

time on hardware that is available to most scientists. We

showed typical simulation times and how performance

scales with increasing numbers of parallel processes in

Fig. 4. However, performance could be improved further

by rewriting some of the Matlab code in C or Fortran,

which could be incorporated into Matlab via its MEX

interface. In particular, the spike queuing and delivery

code would benefit from this approach when simulating

networks with high spike rates, as it is only vectorised

over individual spikes. High spike rates can result in

longer simulation times as the spike queue interpretation

overhead increases. This is, therefore, a priority for future

VERTEX development. However, the pure Matlab ver-

sions of VERTEX will continue to be maintained, as

some users may not have access to a suitable C or Fortran

compiler.

LFP simulation: spatial properties and resolution

We found that the compartmental reduction method

described by Bush and Sejnowski (1993) created neuron

models that, in a population, reproduced the spatial prop-

erties of the LFPs generated by the equivalent full mor-

phological reconstructions to a reasonable degree of

accuracy. Where there were large discrepancies, they were

close to or fell within the range of the spatial values

measured in several further populations of different mor-

phologically reconstructed neurons. The suitability of this

reduced model allows VERTEX to simulate LFPs from

large networks in reasonable time.

The largest compartment in the reduced models was

400 lm long, which is the inter-electrode distance in a

Utah array. New, very high-density MEAs with several

1,000 electrodes can record with such high spatial resolu-

tion as to enable the visualisation of individual dendritic

tree and synapse activity in detail (Frey et al. 2009), or to

record the spiking activity of thousands of neurons (Ber-

dondini et al. 2009), making our reduced neuron models

unsuitable for use in conjunction with these experiments.

The array described by Frey et al. (2009) is designed to

record only from a subset of 126 electrodes concurrently,

allowing very high-resolution recordings from small areas,

but making it unsuitable for recording the wider population

activity that our model is designed to capture. The 4,096

electrode array presented by Berdondini et al. (2009) can

record simultaneously from all electrodes, allowing the

detailed visualisation of signal propagation through a net-

work. However, this array is designed for capturing the

spike times of thousands of individual neurons rather than

investigating the properties of extracellular signals. Given

the spatial smearing of LFP signals, it would not be

appropriate to use this type of array to investigate LFPs

across active neural circuits. Additionally, very high-den-

sity arrays are new technologies with usage and data ana-

lysis techniques still under development. Lower density

MEAs will remain useful for studying neuronal population

activity for the foreseeable future, especially given the

Utah array’s approval for use in humans. As higher density

arrays become more common, we anticipate that advances

in computing speed [through, for example, use of general-

purpose graphical processing unit (GPGPU) computing

(Brette and Goodman 2012), already a feature of the

Matlab Parallel Computing Toolbox] will permit the sim-

ulation of large populations of higher resolution neuron

models if desired.

Slice model properties

To demonstrate our simulation approach, we constructed a

model of a neocortical slice. We combined the connection

probabilities given by Binzegger et al. (2004) with axonal

arborisation radii measured in macaque visual cortex

(Blasdel et al. 1985; Fitzpatrick et al. 1985), and use a

Gaussian kernel as suggested by the data from Hellwig

(2000) as the decay in connection probability away from

the soma. This approach allowed us to calculate the num-

ber of connections removed by slice cutting for each neu-

ron, and reduce its number of connections accordingly

when initialising the model.

Our anatomical model results in spatially uniform

neuron densities and connectivity statistics, with small

decreases in connection numbers nearer the slice bound-

aries. However, the recordings from the experimental

slice illustrate substantial inhomogeneities in gamma

power between electrodes, even within layers, that are not

seen in the model. These could be caused by spatial

variations in synapse densities and strengths, neuron

group densities, neurons’ dynamical properties, gap

junction densities and strengths, or axonal plexus prop-

erties. While our software does not currently allow

specification of gap junctions or axon properties, the other

potential inhomogeneities can be investigated further in

conjunction with experiments in vitro: VERTEX includes

functions to modify parameters in spatially localised

regions, allowing spatially inhomogeneous tissue to be

modelled. As the results of these modifications can be

compared directly with extracellular recordings, theoret-

ical predictions can be tested even when spiking data are

lacking. For example, spatial variations in synapse den-

sities may be caused by the ‘‘patchy’’ projections made by

excitatory neurons (Binzegger et al. 2007; Voges et al.

2010b; Bauer et al. 2012; Douglas and Martin 2004).
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Future research could incorporate the patchy projection

model of Voges et al. (2010a, b) into our slice model to

investigate how patchy connectivity affects network

activity and resultant LFP across the slice.

We model the cortical layers as being flat, with

boundaries at constant depths below the cortical surface.

Neocortex is a folded structure, though, which is apparent

even at the small scale of the slice—note the curved

shaded regions in Fig. 9a showing the cortical surface and

white matter boundaries, as well as the curved profile of

gamma power across the MEA. Curves add further com-

plications to the other inhomogeneities discussed above,

in terms of neuronal densities, layer thicknesses and

axonal arborisation variations. Additionally, the align-

ment of pyramidal apical dendrites is perpendicular to the

cortical surface, so the alignment of the current dipoles

arising from synaptic currents on pyramidal dendrites

(Lindén et al. 2010; Nunez and Srinivasan 2006) varies

across space, with implications for the measured LFP.

VERTEX functions for specifying curved layer bound-

aries are currently under development so that future

experiments can investigate the effects of curved surfaces

on the measured LFP.

Further considerations for LFP simulation

In its current state, VERTEX is designed for investigating

LFPs in medium to large-scale spiking neural networks, as

these are most often used for modelling the activity of large

neural populations. We have, therefore, only implemented

simplified neuron models that do not include realistic

active conductances that produce, for example, back-

propagating dendritic spikes or sub-threshold membrane

oscillations, which would also contribute to the LFP. As

gamma oscillations are driven by synaptic interactions

between populations, we consider this to be a reasonable

simplification for our neocortical slice model. When

investigating other dynamical regimes—such as sub-

threshold oscillations in the absence of spiking (Hutcheon

and Yarom 2000)—this simplification may not be appro-

priate. However, VERTEX will still be useful for investi-

gating many research questions even with these

simplifications. For example, most previous spiking neural

network models use highly simplified neuron models, for

which there is no general, reliable method for estimating

the LFP (Einevoll et al. 2013). VERTEX allows

researchers to implement similar networks using neuron

models that produce a spatially realistic LFP, so that they

can directly compare the LFPs produced by the spiking

activity in their models to experimental data. Such com-

parisons may reveal both agreements and discrepancies

between model and experiment, which might not have been

apparent from comparisons of spiking alone. This was the

case for our slice model: we could not directly compare

spiking across space as it was massively under-sampled

in vitro, but the simulated LFPs based on our prior

knowledge of neuronal firing during gamma oscillations

revealed that we can account for the observed phase

inversion between L2/3 and L1, but cannot account for the

spatial variation in gamma power with our current model.

Future research to address this discrepancy is discussed

above.

Several exciting experimental results have recently

shown that neuronally generated electric fields impact on

the membrane potentials of nearby neurons without

requiring any synaptic contact. Such ‘‘ephaptic’’ coupling

of neurons was investigated in models (Holt and Koch

1999) and, more recently, confirmed in experiments

showing that such interactions could modulate oscillatory

network activity (Fröhlich and McCormick 2010), entrain

action potentials (Anastassiou et al. 2011) and potentially

contribute to the spread of epileptiform activity (Zhang

et al. 2014). We have purposefully ignored the contribution

of ephaptic interactions in our model for the sake of sim-

plicity, and have not incorporated the simulation of eph-

aptic coupling into the VERTEX simulator. While the

results reported by Fröhlich and McCormick (2010) sug-

gest that endogenous electric fields should be taken into

account in models of oscillatory activity, they concentrated

on neocortical slow oscillations, which are greater in

amplitude than the gamma oscillations we modelled.

However, the role of ephaptic interactions on network

activity under different conditions must be investigated

further. As VERTEX can simulate the LFP at arbitrary

locations in a network, it would be possible to incorporate

an ephaptic coupling mechanism that depended on the LFP.

However, doing this rigorously would entail measuring the

LFP near every compartment in the model, which is not

feasible. Developing suitable approximation methods for

incorporating realistic ephaptic coupling is, therefore, an

important direction for future research. Similar methods

could also be used for simulating artificially applied elec-

tric fields/currents, such as from extracellular stimulating

electrodes.

Finally, the VERTEX simulator assumes a purely

resistive, constant and homogeneous extracellular con-

ductivity, with no frequency dependence (Pettersen et al.

2012). The extracellular medium’s frequency filtering

effects are not currently known for certain (Einevoll et al.

2013): some results have demonstrated an intrinsic low-

pass filtering effect (Gabriel et al. 1996; Dehghani et al.

2010) potentially created by ionic diffusion (Bédard and

Destexhe 2009), though direct measurements in macaque

cortex in vivo found minimal frequency filtering from

intrinsic tissue properties (Logothetis et al. 2007). If a

frequency-dependent effect of the extracellular medium is
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confirmed by future studies, Eqs. (1), (2) (see ‘‘Methods’’)

can be modified to take this into account (Pettersen et al.

2012).

Conclusion

We have described the VERTEX simulation tool for

simulating LFPs in large neuronal populations. VERTEX

includes functionality for generating spatially constrained

networks of several neuron populations, whose parame-

ters are easily specified in Matlab structures. ‘‘Virtual

electrodes’’ can be positioned at arbitrary locations in the

model to simulate the LFP generated by the network.

Parallel computing and code vectorisation, as well as the

use of reduced compartmental neuron models, allow

VERTEX to simulate network activity and LFPs in rea-

sonable time. Finally, we simulated LFPs from a neo-

cortical slice model and compared them with LFPs

recorded from macaque neocortex in vitro, illustrating

new avenues for research into spatial variations in the

LFP signal. We hope that the VERTEX and our neocor-

tical slice model will prove useful to other researchers

investigating the relationship between neuronal circuit

dynamics and experimental or clinical brain tissue

recordings.

Methods

Software and simulation methods

Spatial LFP characteristics of each individual compart-

mental neuron model were tested using LFPy as described

in the Results section. LFPy simulations used a 0.125 ms

time-step and NEURON’s standard implicit Euler numer-

ical integration method. Each simulation was run for

1,250 ms simulation time, and the first 250 ms were dis-

carded to remove simulation start-up effects.

VERTEX is implemented in Matlab. It uses the Matlab

Parallel Computing Toolbox for parallelisation, though it

can also be run serially. Equations are integrated numeri-

cally using a second-order Runge–Kutta method (Press

et al. 2007); we used a 0.03125 ms time-step unless

otherwise specified. VERTEX incorporates the methods

outlined by Morrison et al. (2005) for parallel simulation,

and the algorithms and data structures described by Brette

and Goodman (2011) for code vectorisation.

In both LFPy and VERTEX, extracellular potentials are

calculated by summing the membrane currents of each

compartment, weighted by distance from the electrode tips.

The line-source method (Holt 1998), as used previously by

Lindén et al. (2010, 2011) and Pettersen and Einevoll

(2008), is used to calculate the contribution from all den-

dritic compartments to the LFP, Udend, at a measurement

point r and time t:

Udend r; tð Þ ¼
X

k

Imem;k tð Þ
4prexDsk

log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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p
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(Holt 1998), where Imem,k is the membrane current from

compartment k, rex is the extracellular conductivity, Dsk is

the length of compartment k, qk is the perpendicular dis-

tance from compartment k, hk is the longitudinal distance

from the end of compartment k, and lk = Dsk ? hk is the

longitudinal distance from the start of the compartment. As

in Lindén et al. (2010, 2011) and Pettersen and Einevoll

(2008), somatic compartments are modelled as point cur-

rent sources in VERTEX:

Usoma r; tð Þ ¼
X

s

Imem;s tð Þ
4prexrs

; ð2Þ

(Nunez and Srinivasan 2006), where rs is the distance

between point r and the centre of soma s. The total

extracellular potential measurement at point r is then

U ¼ Usoma þ Udend. In all simulations, we used a value of

rex = 0.3 S/m (Hämäläinen et al. 1993).

LFPy simulations to test the model reduction method

(Bush and Sejnowski 1993) were run on an Intel Core-i7

based PC running Ubuntu Linux 11.10 using a pre-release

version of LFPy, NEURON 7.1 and Python 2.7.2, and an

Intel Xeon E5640 workstation running Linux Mint 16 using

LFPy 1.0 with NEURON 7.3 and Python 2.7.5. The LFPy

vs. VERTEX performance comparison was run on the

same Intel Xeon E5640 workstation, using Matlab 2013a.

All other VERTEX simulations were run on a 48-core HP

ProLiant server running CentOS Linux 5.8 with Matlab

R2012b. Parallel simulations were run on 12 cores unless

otherwise specified. The code, as well as documentation

and tutorials, will be made available at http://www.

dynamic-connectome.org/ upon publication.

Neoortical slice model

The neocortical slice model contained fifteen neuron

populations, defined by location, connectivity, morphol-

ogy, dynamics, and type of neurotransmitter effect

(excitatory or inhibitory). We used the naming conven-

tion from Binzegger et al. (2004) as adapted by Iz-

hikevich and Edelman (2008), defining the groups listed

in Table 1 (full model parameters are given in Tables

ESM1–ESM9). Individual neurons are represented by

compartmental models with 7, 8 or 9 compartments,

derived from the neuron models given by Mainen and

Sejnowski (1996) using the compartmental reduction

method of Bush and Sejnowski (1993). Compartmental
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structure and neuron parameters are given in Fig. ESM2;

Tables ESM1 and ESM2. Our connectivity data are from

cat visual cortex (Binzegger et al. 2004), so we took

parameters for the neuronal density and layer boundaries

from the same source. We scaled the layer boundaries to

increase the total cortical depth to 2.6 mm, which was

approximately the cortical depth in the comparison

experimental slice (established by post hoc histology,

not shown).

VERTEX is designed for specifying models in 3D

space, giving all neuronal compartments 3D start and

end coordinates. For the neocortical slice, we defined the

z-axis to be the cortical depth from white matter through

the layers to the cortical surface, with the border

between layer 6 and the white matter set to z = 0 mm.

The x- and y-axes ran parallel to the cortical surface,

with the y-axis pointing along the thickness of the slice,

and the x-axis along the slice width. The boundaries

between cortical layers were then defined as x–y planes

with constant depth zl. Layer 1 was aneuronal, and

layers 2 and 3 were combined. The total model size was

then specified by the cortical depth zmax, the thickness of

the slice ymax, the width of the slice xmax, and the

neuronal density D, with the total number of neurons

calculated as N = xmax 9 ymax 9 zmax 9 D. The model

slice had dimensions xmax = 4.4 mm, ymax = 0.4 mm

and zmax = 2.6 mm, and D = 38,335 neurons/mm3,

resulting in a model size of 175,421 neurons. We then

positioned neurons by placing their somas at random x,

y and z values constrained by xmax, ymax and the zl

boundaries of the containing layer, and rotating them by

random angles. Pyramidal cells had their apical dendrites

aligned parallel to the z-axis.

All neurons could form connections within their group

and with neurons from all other neuron groups, according

to the values given in Table ESM3. Connections were

also constrained by the axonal arborisation radii of the

presynaptic neurons, taken from Blasdel et al. (1985) and

Fitzpatrick et al. (1985) as adapted by Izhikevich and

Edelman (2008). Arborisations were considered in 2D: on

the x–y plane on a per-layer basis. We assumed an iso-

tropic Gaussian spatial distribution of connections centred

on the presynaptic neuron (Hellwig 2000), setting the

arborisation radius equal to two standard deviations of the

Gaussian kernel, so that *91 % of connections were

contained within the specified arborisation radius. Arbo-

risation radii are given in Table ESM4. When deciding on

the targets of a pre-synaptic neuron i in layer l, we cal-

culated the expected number of connections made by i in

l remaining inside the slice by multiplying the number of

connections specified in Table ESM3 by the ratio fli,

defined as the integral of the kernel within the slice

boundaries:

fli ¼
Zbyi

ayi

Zbxi

axi

1

2pr2
li

exp � x2 þ y2

2r2
li

� �� �
dxdy

¼ 1

4

(
erf

axiffiffiffi
2
p

rli

� �
� erf

bxiffiffiffi
2
p

rli

� �� �

� erf
ayiffiffiffi
2
p

rli

� �
� erf

byiffiffiffi
2
p

rli

� �� �)
; ð3Þ

where axi is the distance from neuron i to the left edge of the

slice, bxi the distance to the right edge, ayi the distance to the

front edge, byi the distance to the back edge, rli is half the

arborisation radius of i in layer l (see Fig. 5), and erf the

Gaussian error function (this solution is valid provided that

axi and ayi are negative, and bxi and byi are positive). Pyra-

midal neuron dendrites span several layers above their soma

layer, so we used the connectivity statistics provided per

layer for pyramidal neurons by Binzegger et al. (2004).

Axonal transmission delays were calculated as the Euclidean

distance between the presynaptic and postsynaptic neurons’

somas divided by the axonal transmission speed of 0.3 m/s

(Hirsch and Gilbert 1991), plus a constant synaptic delay of

0.5 ms to account for the time taken for neurotransmitter

release and binding (Katz and Miledi 1965). All these

modelling decisions are handled by the initialisation func-

tions in VERTEX, which also allow models to be initialised

with uniform spatial connectivity profiles, no synapse

reduction, arbitrary delay times, and in a cylindrical shape

rather than the cuboid of our slice model.

Synapse weights are specified in Table ESM5. We

included AMPA and GABAA type conductance-based

synapses (the minimal set of synapse types required for

generating gamma). When a neuron fired a spike, the

synaptic conductance at the contacted target compartments

increased by the relevant synaptic weight after the relevant

axonal delay time, then decayed exponentially. VERTEX

currently includes current-based and conductance-based

models of single-exponential and alpha synapses.

We stimulated our model to mimic the bath application

of kainate, which excites the pyramidal axonal plexus,

providing the neurons with excitatory drive. We simulated

this by applying independent random input currents to each

neuron, modelled as Ornstein–Uhlenbeck processes (simi-

lar to Arsiero et al. 2007). Input current parameters are

given in Table ESM6. VERTEX can provide random

inputs to neurons as either currents or membrane conduc-

tance fluctuations.

In vitro experimental methods

All experiments were carried out in accordance with the

European Communities Council Directive 1986 (86/609/
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EEC), the US National Institutes of Health Guidelines for

the Care and Use of Animals for Experimental Procedures,

and the UK Animals Scientific Procedures Act.

Surgical preparation

The monkey (Macaca mulatta, male, 8 years old) used in

this study was subject to experiments in vivo involving

extracellular recording of neural activity and local drug

application (iontophoresis). All tissue samples used in this

study were taken from intact brain areas that were not the

subject of studies performed before tissue extraction.

Extraction was performed under general anaesthesia, which

was maintained over the course of 4 days. For the anaes-

thesia, the animal was initially sedated with a 0.1 ml/kg

ketamine intra-muscular injection (100 mg/ml). Thereafter,

bolus injections of propofol were administered intrave-

nously to allow for tracheotomy and placement of catheters

for measuring intra-arterial and central venous blood

pressure. During surgery, anaesthesia was maintained by

gaseous anaesthetic (2.5–3.9 % sevoflurane) combined

with continuous intravenous application of an opioid

analgesic (Alfentanil, 120 lg/kg/h), a glucocorticoid

(Methylprednisolone, 5.4 mg/kg/h) and saline (50 ml/h).

The animal’s rectal temperature, heart rate, blood oxy-

genation and expired CO2 were monitored continuously

during anaesthesia.

Slice preparation

Macaque neocortical samples were routinely obtained from

the inferior temporal gyrus. This was confirmed by post

hoc anatomical examination of the fixed (paraformalde-

hyde) whole brain. Following resection, cortical samples

were immediately placed in ice-cold sucrose artificial

cerebrospinal fluid (ACSF) containing: 252 mM sucrose,

3 mM KCl, 1.25 mM NaH2PO4, 2 mM MgSO4, 2 mM

CaCl2, 24 mM NaHCO3, and 10 mM glucose. Neocortical

slices containing all layers were cut at 450 lm (Microm

HM 650 V), incubated at room temperature for 20–30 min,

then transferred to a standard interface recording chamber

at 34–36 �C perfused with oxygenated ACSF containing:

126 mM NaCl, 3 mM KCl, 1.25 mM NaH2PO4, 1 mM

MgSO4, 1.2 mM CaCl2, 24 mM NaHCO3, and 10 mM

glucose. Persistent gamma frequency oscillations were

induced by the application of kainate (400–800 nM) to the

circulating ACSF and were deemed stable if there was no

change to frequency or power after 1 h. In general, we did

not observe spontaneous network activity in the slices

before the bath addition of kainate. LFP recordings were

taken using multichannel 10 9 10 silicon electrodes with

an inter-electrode distance of 400 lm (Utah array,

Blackrock Microsystems, Salt Lake City, UT, USA). Time

series were digitally sampled at 10 kHz.

Data processing and analysis

Data processing and analysis was performed in Matlab

R2012b. We used the same processing chain for both

simulated and experimental recordings, except that com-

mon average re-referencing, line noise removal and re-

normalisation were only applied to the experimental

recordings. For LFP analysis, recordings were first re-ref-

erenced to the common average, then resampled at 1 kHz.

We removed line noise and harmonics by band-pass fil-

tering each recording at 49–51 Hz, 99–101 Hz,

149–151 Hz, 199–201 Hz and 249–251 Hz (symmetrical

Butterworth filter, 8th order) and subtracting the resulting

signal from the original signal. The recordings were then

band-pass filtered between 2 and 300 Hz (symmetrical FIR

filter, Kaiser window, 2,000th order). We restricted our

analysis to an 18 s segment of the recording that was

identified as artefact-free in all channels by visual inspec-

tion of the filtered traces. After filtering, these segments

were normalised to zero mean, unit standard deviation to

facilitate signal comparison across the MEA.

Power spectra were calculated using the Thomson

multitaper method with a time-bandwidth product of 10 (19

tapers) for experimental recordings and 3 (5 tapers) for the

shorter simulated recordings, with estimated 95 % confi-

dence intervals calculated using a Chi-squared approach.

Total gamma power at each electrode was calculated by

taking the integral of the power spectrum between 20 and

40 Hz. Gamma power between electrodes was estimated

by bicubic interpolation between electrode locations.
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Fröhlich F, McCormick DA (2010) Endogenous electric fields may

guide neocortical network activity. Neuron 67(1):129–143.

doi:10.1016/j.neuron.2010.06.005

Gabriel S, Lau RW, Gabriel C (1996) The dielectric properties of

biological tissues: II. Measurements in the frequency range

10 Hz to 20 GHz. Phys Med Biol 41(11):2251–2269

Gewaltig M-O, Diesmann M (2007) NEST (NEural simulation tool).

Scholarpedia 2(4):1430

Gleeson P, Crook S, Cannon RC, Hines ML, Billings GO, Farinella

M, Morse TM, Davison AP, Ray S, Bhalla US, Barnes SR,

Dimitrova YD, Silver RA (2010) NeuroML: a language for

describing data driven models of neurons and networks with a

high degree of biological detail. PLoS Comput Biol

6(6):e1000815. doi:10.1371/journal.pcbi.1000815
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