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Background: Previous studies reported reduced volumes of many brain regions for temporal lobe epilepsy (TLE).
It has also been suggested that there may be widespread changes in network features of TLE patients. It is not
fully understood, however, how these two observations are related.
Methods: Using magnetic resonance imaging data, we perform parcellation of the brains of 22 patients with left
TLE and 39 non-epileptic controls. In each parcellated region of interest (ROI) we computed the surface area and,
using diffusion tensor imaging and deterministic tractography, infer the number of streamlines and their average
length between each pair of connected ROIs. For comparison to previous studies, we use a connectivity ‘weight’
and investigate how ROI surface area, number of streamlines & mean streamline length contribute to such
weight.
Results: We find that although there are widespread significant changes in surface area and position of ROIs in
patients compared to controls, the changes in connectivity are muchmore subtle. Significant changes in connec-

tivity weight can be accounted for by decreased surface area and increased streamline count.
Conclusion: Changes in the surface area of ROIs can be a reliable biomarker for TLE with a large influence on con-
nectivity. However, changes in structural connectivity via white matter streamlines are more subtle with a rela-
tively lower influence on connection weights.
© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Epilepsy is a neurological disease characterised by abnormal electro-
physiological events, leading to recurring seizures in the brain. Epileptic
seizures can be broadly grouped into two categories. Generalised sei-
zures involve widespread distributed bilateral networks, whilst focal
seizures are limited to one hemisphere and involve a more localised
area (Berg et al., 2010). The most common form of epilepsy is medial
temporal lobe epilepsy (TLE) which most frequently occurs in the left
hemisphere. Despite the traditional view of focal and generalised sei-
zures being different in terms of their extent, recent evidence suggests
involvement of brain areas far beyond the temporal lobe in TLE patients
(Richardson, 2012).

Changes in greymatter volume and concentration have been shown
in many brain regions in patients with TLE. Specifically, volumetric
. This is an open access article under
decreases have been shown in the amygdala, thalamus, entorhinal cor-
tex, caudate nucleus, putamen and globus pallidus amongst others
(DeCarli et al., 1998; Pitkänen et al., 1998; Bernasconi et al., 2004;
Keller and Roberts, 2008; Meade et al., 2008). These changes are clearly
wide-ranging and, although technically categorised as focal epilepsy, do
involve several brain areas.

An alternative in considering brain regions on an individual basis is
to consider a network of brain regions interconnected via the white
matter. At the macroscopic scale, diffusion weighted magnetic reso-
nance imaging (DW-MRI) has emerged in recent years as a valuable
tool for inferring anatomical brain connectivity between brain regions
(Le Bihan and Johansen-Berg, 2012; De Reus and Van den Heuvel,
2013). Some studies have found differences in TLE patient connectivity.
Bonilha et al. (2012) showed a decrease in connectivity between bilat-
eral posterior cingulate regions. Further decreases in connectivity to
several other areas were also reported in the limbic network, though
they were not significant after correction for false discovery rate (FDR)
(Genovese et al., 2002). In a separate study by the same group patients
had reduced connectivity between thalamic and precentral areas in
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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addition to increased connectivity between parietal and supramarginal
areas (Bonilha et al., 2013). In both studies the connectivity was deter-
mined as the number of streamlines between two areas, normalised by
the total volume of the two areas. Another recent analysis of DW-MRI
inferred connectivity in patients with left TLE also showed differences
in the anatomical network of patients when compared to controls (Liu
et al., 2014). That study also normalised connections between two
ROIs by their average volumes. De Salvo et al. (2014) showed in patients
with TLE decreases in connectivity from the cingulate, precuneus and
orbitofrontal regions to other areas within the same module. In that
study the connectivity weight was defined as a combination of the sur-
face area, number of connecting streamlines and the average streamline
length.

Thus, many of the previous studies of anatomical connectivity in TLE
between two regions of interest (ROI) have combined (a) the number of
streamlines with (b) measures influenced by the size of those ROIs (ei-
ther volume or surface area) into a single value: a connection weight.
Since widespread variation has been shown in the volume and surface
size of many ROIs, it is unclear how each of the two measures contrib-
utes to connectivity. In this study, we systematically elucidated the
changes in surface area, the changes in connectivity between areas,
and their contribution to connections weights.

2. Methods

2.1. Subjects and MRI acquisition

We collected 22 left temporal lobe epilepsy subjects and 39 age-
matched controls. All patients have medial temporal lobe epilepsy with
68 cortical anatomical regions

Connectivity Matrix

14 subcortical regions

with gray matter cortical

regions of interest

Whole brain conne

Fig. 1.Overall procedure. FromT1-weighted images, we generated 82 regions of interest (ROIs, 3
images, we reconstructed streamlines using deterministic tracking (on the right). Combining th
termined by the number of streamlines connecting two ROIs.
unilateral hippocampal sclerosis according to MRI criteria with ipsilateral
seizure onset during non-invasive/invasive EEG monitoring and
underwent epilepsy surgery (selective amygdalohippocampectomy) af-
terwards. Further details on the subject population can be found in
Table S1. For all subjects, we obtained T1-weighted MR images and
diffusion-weighted MR images with a 3 Tesla scanner (Siemens
MAGNETOM Trio Tim syngo, Erlangen, Germany). T1-weighted MRI
data were recorded with 1 mm isovoxel, FoV 256 mm, TR = 2500 ms,
and TE = 3.5 ms. DTI data were recorded with 2 mm isovoxel, FoV =
256 mm, TR = 100,000 ms, TE = 91 ms, and 64 diffusion directions
with b-factor of 1000 s mm−2 and 12 b0 images.
2.2. Network construction

We used FreeSurfer to obtain surface meshes of the boundary be-
tween grey matter and white matter from T1 anatomical brain images
(http://surfer.nmr.mgh.harvard.edu, cf. Fig. 1; Image processing on the
Left Side). After registering surface meshes into the diffusion space, we
generated volume regions of interest (ROIs), which are voxels in the
grey matter. FreeSurfer provides parcellation of anatomical regions of
cortices (34 for each hemisphere) based on the Desikan atlas (Fischl
et al., 2004; Desikan et al., 2006) and subcortical regions (Fischl et al.,
2004, 2002) of which seven for each hemisphere (nucleus accumbens,
amygdala, caudate, hippocampus, pallidum, putamen, and thalamus)
were included (see Fig. 2a for names of ROIs). Thus, our structural
brain networks, observing both hemispheres, consisted of 82 cortical
and subcortical regions in total. Parcellation and registrationwereman-
ually checked for errors by visual inspection.
T1 weighted Image Diffusion Tensor Image

Deterministic Tractography

ctome

4 cortical areas and 7 subcortical areas a hemisphere, on the left). From diffusionweighted
ese two pre-processing steps, we constructed a weighted network where weights are de-
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Fig. 2. ROIs have a smaller surface area in patients than in controls. a) t score for surface area differences between groups. More negative values indicate a more significant decrease in
patients. Significant results after FDR are indicated in red. Using a separate GLM which includes total surface area as a regressor, three areas indicated with an asterisk remain significant.
b) Physical locations of the locations of the ROI used. Significant results after FDR are generally located around subcortical and left temporal areas. The projected view is shows the left
hemisphere. c) The total surface area (ATot) of all ROI is significantly decreased in patients.

Table 1
Analysed network features where i and j represent different ROIs.

Measure Interpretation

Mi,j Number of connecting streamlines between i and j
Ei,j Euclidean distance between i and j [mm]
Li,j Mean spatial length of connecting streamlines between i and j [mm]
Wi,j Weight of connection between i and j
Ai Surface area of i [mm2]
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To obtain streamline tractography from eddy-current corrected dif-
fusion tensor images (FSL, http://www.fmrib.ox.ac.uk/fsl/), we used the
Fiber Assignment by Continuous Tracking (FACT) algorithm (Mori and
Barker, 1999) with 35° of angular threshold through diffusion toolkit
along with TrackVis (Wang et al., 2007) (Fig. 1 image processing on
the right side).

For network reconstruction, we modified the Ucla Multimodal Con-
nectivity Package (UMCP, http://ccn.ucla.edu/wiki/index.php) to obtain
connectivity matrices from the defined and registered ROIs and
tractography. We used the number of connecting streamlines to deter-
mine our connectivitymatrix (M).We also computed the Euclidean dis-
tance between the centre of each ROI to give us a distance network E. To
compute the surface areas of each ROI (Ai) FreeSurfer was used for cor-
tical ROIs, and we computed the interface area to white matter in T1
space for subcortical ROIs, whilst Zhang et al. (2011) and Liao et al.
(2010) computed interface areas to white matter in DTI space for all
ROIs. We also computed a streamline length matrix L in which each el-
ement Li,j corresponds to themean length of the streamlines connecting
ROI i to ROI j in millimetres (mm). For connections that are absent, the
streamline length is set to zero and disregarded from the statistical anal-
ysis (see further details; Section 2.3). Finally, to aid comparison with
previous studies we defined a connection weight. The weight between
ROI i and ROI j is defined as:

Wi; j ¼
2

Ai þ Aj

 !
�Mi; j �

1
Li; j

 !
And is similar to that defined by Hagmann et al. (2008). Our data for
analysis is therefore as specified in Table 1.

2.3. Statistical tests & visualisation

All topological and statistical operations were conducted using
MATLAB (Version 2012a, MathWorks, Natick, USA). We used a general
linear model (GLM) to regress age and gender and to find group differ-
ences (fitlm method in Matlab). We also, where stated, include total
brain surface area (ATot) as a regressor to check if results can be attribut-
ed to global brain reduction, or if they are over and above such reduc-
tions. We define total surface area as ATot = Σi = 1…82Ai in the 82 node
network. Where mentioned, false discovery rate (FDR) was applied
with a 5% significance level using custom code to correct for multiple
comparisons. In group analysis of L, M, and W we only included ele-
ments where a connection was present for the majority of subjects in
one or more of the subject groups to ensure that a genuine difference
was observed. We also used partial least squares regression to account

http://www.fmrib.ox.ac.uk/fsl/
http://ccn.ucla.edu/wiki/index.php
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for multicolinearities in the data (Supplementary Fig. S4) to measure
the contribution of Mi,j, Si,j, Li,j and ATot to Wi,j since various factors can
be correlated and act as a predictor (Lefebvre et al., 2014). To test for
normality of distributions we use the Lilliefors test. To test for differ-
ences between groups (patients & controls) the group was included as
a categorical variable in the model and the t-statistic and p-value was
calculated, which tests for the significance of that term in the model.
For visualisation, a standard template brain mesh was overlaid with
the average ROI coordinates for all subjects (Collins et al., 1998).

3. Results

The results are presented in five sections. First, we investigate
changes in the surface area of ROIs. Second, we show differences in
the position of ROIs, relative to each other (i.e. the Euclidean distance
between the centre of them). Third, we then investigate changes in
the number of connecting streamlines between ROIs. Fourth, we ob-
serve changes in the mean length of connecting streamlines. Note that
this mean length follows the actual three-dimensional trajectory of a
fibre tract and, depending on the degree of fibre curvature, can strongly
deviate from the Euclidean distance between the connected ROIs. Final-
ly we investigate how these changes jointly contribute to changes ob-
served in connection weight.

3.1. ROIs in patients have a smaller surface area than in controls

The surface area of the majority of ROIs in the network was de-
creased in patients, relative to controls. Fig. 2 shows the t-score for
each ROI. More negative values indicate a smaller surface area for pa-
tients, relative to controls, for that ROI. Eleven of the 82 ROIs survived
FDR (indicated in red), the majority of which were located in the left
hemisphere and in subcortical structures of the right hemisphere. Over-
all there is a clear global reduction in total surface area in patients
(Fig. 2c). When including the total surface area as a regressor three
ROIs remain significant (p b 0.0001) with their reductions in surface
area over and above the global decreases. These areas are indicated by
asterisks on Fig. 2a.

3.2. ROIs are physically closer to each other in patients

Logically, if the surface area of two adjacent parcellated regions de-
creases equally in all directions, the Euclidean distance between the
centre of thoseROIwill also decrease. In Fig. 3awe show thedistribution
of t-scores of Euclidian distances between all ROIs. As expected with
suchwidespread changes in surface area (Fig. 2), the entire distribution
is centred around a t-score of−1.7, with only very few (statistically in-
significant) ROIs further apart in patients. This means that the vast ma-
jority of distances between ROI are decreased in patients, since the vast
b)a)
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Fig. 3.Most ROIs are closer together in patients than in controls. a) Distribution of t scores repr
crease in Euclidean distance between two ROIs in patients (bin number = 35). Distances betw
b) The most significant decreases in Euclidean distance between ROIs in patients are located p
tween two ROIs is indicated by a red line between those ROIs.
majority have negative t-scores. The t-score can, in effect be considered
a measure of shrinkage between two ROIs. Since the changes are so
widespread many results remain after FDR correction.

In Fig. 3b we show the top 1% most significant changes in Euclidean
distance between ROI. These are generally located in the left hemi-
sphere in the subcortical, temporal and parietal areas and represents
those with t-scores of less than −4.3 (p b 0.0001).

These decreases within the left hemisphere are also consistent if the
total brain surface area is included as a further regressor (Supplementa-
ry Fig. S1). Several distances are decreased in patients over and above
what would be expected, given the global brain decreases in surface
area. These are significant after FDR correction.

3.3. Subtle changes in connectivity

Straightforward analysis of the number of streamlines (M) revealed
no significant differences after FDR correction.With t-scores on average
around zero, the networks are seemingly similar in patients and con-
trols (Fig. S2a). Indeed, the 10% most significant differences (p b 0.041,
|t| N 2.1) appear to be fairly evenly and randomly distributed throughout
the brain with no obvious spatial profile as in the previous analysis (for
example, Figs. 2 and3,which are predominantly in the left hemisphere).
The spatial locations of these decreases/increases in the number of
streamlines are shown in red/blue, respectively, in Supplementary
Fig. S2b. If total brain surface area is included as a regressor there is a sig-
nificant increase in connectivity between the insular and superior tem-
poral cortex areas in the left hemisphere (p b 0.0001).

3.4. Subtle changes in streamline length

We find no significant differences in mean streamline length be-
tween ROIs. Supplementary Fig. S3a shows the distribution of t-scores
(negative values indicate a decrease in patients). With a mean of ap-
proximately zero there is no clear skew as in Fig. 3a. Furthermore,
there are no specific obvious spatial structures when considering the
most different streamline lengths (top 10% most different shown in
Supplementary Fig. S3b). This is also the case when including the total
brain surface area as a regressor, with no significant differences or obvi-
ous spatial profile (result not shown).

3.5. Significant changes in connection weight

Upon investigation of the weight based measure (W) we find three
connections significantly different after FDR in patients. All three have
increased weight in patients relative to controls. These are shown topo-
graphically in Fig. 4 and include bilateral thalamic–amygdala connec-
tions, in addition to increased hippocampal-entorhinal connectivity
weight. When including total surface area in the GLM only the bilateral
LH
LHRH

Decreased 
in patients

esenting changes in Euclidean distance between ROIs. More negative values indicate a de-
een ROIs with t b −4.3 have a p b 0.0001 and represent the 1% most significant changes.
redominantly in the left hemisphere and many involving subcortical areas. A decrease be-
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Fig. 4. Significant changes in connection weight. Three connections have increased con-
nection weight in patients (p b 0.0015) significant after FDR correction.
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thalamus–amygdala connections remain significantly different, sug-
gesting these changes in weight are not accounted for by total surface
area and thus highly significant.

Since three factors contribute to connectivity weight (W) it is un-
clear, by considering weight alone, which factors influence the mea-
sured differences between groups, and by how much (to see how
each measure contributes to the connectivity weight itself, rather than
the difference see Supplementary Fig. S4). In Table 2 we investigate
how this relationship unfolds by showing the t-scores for the three con-
nections in question and for the three factors which contribute to it.

For all three connections, the surface area difference is large and
therefore contributes to the difference inweight. This can be specifically
seen for the connection between the left thalamus and left amygdala,
where, although the number of streamlines (t = 1.52) and the mean
streamline length (t = −0.53) are similar between groups, the differ-
ence in surface area is so large & significant (t = 7.63) that the weight
becomes significant too. Interestingly, the same connection in the
right hemisphere has a significant difference in weight, however, this
is not due solely to surface area differences but rather a combination
of surface area and number of streamlines. Connectivity between the
hippocampus and entorhinal cortex is more influenced by an increase
in the number of streamlines at the same time as a decrease in surface
area, whilst the streamline length plays a less influential role.

4. Discussion

In this study we have investigated differences in brain network
features between patients with left temporal lobe epilepsy and
nonepileptic controls. In patients, we found significant decreases in
the surface area of ROIs and the Euclidian distance between them. In
contrast, we found only subtle differences in the number of connecting
streamlines between ROIs and mean streamline length. Finally we
showed increases in connectivityweight in patientswhich can bemain-
ly explained by alterations in ROI surface area and increases in stream-
line number. The subtle increase in streamline number, when combined
with large decreases in surface area then becomes significant.
Table 2
t-Score showing differences between patients & controls. Positive values indicate an in-
crease in patients. For surface area the following formula was used 2

AiþA j
where Ai and Aj

represents the surface area of ROI i and j respectively. SL stands for streamline. Results sig-
nificant after FDR correction are indicated with asterisks. Results in the top 10% most sig-
nificant are indicated with a +.

Connection Weight SL num Surface area SL length

L. thalamus–L. amygdala 4.3285+* 1.5185 7.6372+* −0.52774
L. entorhinal–L. hippocampus 4.0986+* 2.6754+ 2.084 −0.43003
R. thalamus–R. amygdala 4.0682+* 2.3778+ 3.6158+* 0.80549
Many previous studies demonstrating changes in patient connectiv-
ity have used a measure of connection weight which incorporates at
least two different factors (Bonilha et al., 2012, 2013; De Salvo et al.,
2014; Liu et al., 2014). First of all a measure of the number of stream-
lines/fibres is used (either probabilistic or deterministic). Secondly the
volume/surface area of the two connecting ROIs is used. Since so
many ROIs have decreased surface area it is not surprising that alter-
ations in connectivity have been observed in those studieswhich conse-
quently impacts graph theoretic measures (Kaiser, 2011).

Our observation of widespread reduction in ROI surface area is in ac-
cordance with many early MRI studies describing atrophy of brain re-
gions in patients with TLE (DeCarli et al., 1998; Pitkänen et al., 1998;
Bernasconi et al., 2004; Keller and Roberts, 2008; Meade et al., 2008;
Bonilha et al., 2010). However, in our approach we have categorically
computed the surface area of all ROIs, rather than focusing on specific
individual areas. Indeed some areas, such as the ipsilateral amygdala,
are drastically reduced in patients as is perhaps expected following pre-
vious work (Pitkänen et al., 1998; Kullmann, 2011), however, what is
interesting is just how widespread the decreases in surface area are.
The decreases can be observed far beyond the temporal lobe.

Such widespread decreases in ROI surface area intuitively leads to
the suggestion that the ROI are more proximal. Indeed, we found this
to be the case in our analysis. This wasmost significant in the left hemi-
sphere (ipsilateral to the epileptic focus). A possible reason for this im-
plication in epilepsy could be that pathological spreading has less
distance to travel (e.g. using short-range connections through the grey
matter) in order to recruit more tissue when there is a decrease in dis-
tance between ROI. The resulting reduced transmission delays in
propagating activity could facilitate synchronous pre-synaptic neuro-
transmitter release and consequently increase post-synaptic activity
leading to increased population activity. This could be tested in the fu-
ture using, for example, a computational model of spreading (Kaiser
et al., 2007; Kaiser, 2013; Taylor et al., 2013).Whilst in this studywe de-
termined the proximity of regions by calculating the Euclidean distance,
a future studymight use geodesic distance as this is directly biologically
interpretable as lateral connectivity within the greymatter. A surprising
finding is that although ROIs are more closely located, the average
lengths of the connecting streamlines between them are similar. To
our knowledge this is the first time that this has been reported in a
whole brain scale analysis of TLE. A possible explanation for this could
lie in the fact that an inherent problem with DTI tracking algorithms is
their propensity to favour shorter, straighter streamlines (Jones, 2010).
It could be that the longer, more curved fibres are present in the controls
but simply not detected by the algorithm. Alternatively, this might indi-
cate that reductions in grey matter volume in patients occur after fibre
tracts between ROIs have been established in an individual.

Another, perhaps unexpected, finding is that the number of stream-
lines between ROIs is broadly similar between groups. This is despite
several other studies finding changes in network connectivity (Bonilha
et al., 2012, 2013; De Salvo et al., 2014; Liu et al., 2014). However, in
those studies the connecting number of streamlineswas either adjusted
by the volume or surface area of the connected ROIs, the length of the
connecting streamlines, or a combination of all three. Since widespread
atrophy is well known in TLE we chose to investigate each aspect sepa-
rately. Essentially our results suggest that abnormal (atrophied) nodes
contribute to seizure initiation, but that large scale seizure spreading
in the patient (e.g. secondary generalisation — if any) may occur
through otherwise normal connectivity through the white matter.

In the present study we did not investigate the role of functional
connectivity and focused only on structural brain properties. It has
been shown in several studies that alterations in functional correlations
between brain regions exist in patients with both generalised (Zhang
et al., 2011;Masterton et al., 2012;McGill et al., 2012) and focal seizures
including TLE (Liao et al., 2010, 2011; Pittau et al., 2012). How structural
factors such as alterations in the surface area of nodes impacts the fMRI
correlation between them is not fully understood (Taylor et al., 2014).
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Another potential limitation of this study is thatwe used the FACT al-
gorithmwhich is unable to resolve crossing fibres due to our use of DTI
as opposed to DSI or HARDI analysis (Jbabdi and Johansen-Berg, 2011).
This probably leads to an underestimation of the connectivity and thus
may contribute to our inability to detect statistically significant differ-
ences between groups for our number of streamlines analysis. Further-
more, we used deterministic tractography as opposed to probabilistic
tractography which was used in some of the other DTI studies of TLE
(Bonilha et al., 2012, 2013). This may potentially explain why those
studies found slightly different results in terms of individual connec-
tions. Another measure of connectivity is mean fractional anisotropy
(FA) along the streamlines which connect ROIs. Besson et al. (2014) re-
cently used probabilistic tractography in conjunctionwithmean FA and
showed decreases in left hemispheric connectivity in patients. It is un-
clear what contributed to the decreases in connectivity in that study
(i.e. FA, streamline number or both). It is clear, however, that those con-
nections identified in that study clearly overlap with the atrophied re-
gions in ours (cf. their figures 3a & 5a with our Figs. 2b and 3b)
suggesting the importance of regional atrophy in considering wider
connectivity.

An interesting aspect of the study by Besson et al. (2014) is that they
studied patients with right TLE in addition to left TLE. They found differ-
ences to controls which were not symmetric with the alterations in pa-
tients with left TLE, compared to controls. This means that the approach
of Bonilha et al. (2013), which involves flipping the right and left hemi-
spheres in the connectivity matrix to combine all subjects together in
one group, may lead to several more diffuse abnormal connections
appearing which are not actually present in the left TLE group alone.
This could therefore also explain some of the differences in abnormal
connections found in that study and ours.

Due to metadata being unavailable we were not able to investigate
the potential impact of seizure duration on the structural brain proper-
ties studied here. This could be important as a previous study has shown
that cortical thinning occurs in patients with epilepsy and that this is
correlated with seizure duration (Bernhardt et al., 2010). Furthermore,
reductions in hippocampal volume are correlated with seizure duration
(Jokeit et al., 1999; Theodore et al., 1999) in TLE patients. It is therefore
reasonable to suggest some of our analysis may be impacted by this
which, if included, would give greater statistical power.

In conclusion, we suggest that caution should be exercised when
interpreting results which incorporate factors such as grey matter vol-
ume or surface area into white matter connectivity matrices. This is
also the case for connectomics studies of other diseases where atrophy
is known to play a role such as for schizophrenia (Vita et al., 1988)
and Alzheimer3s disease (Chan et al., 2001). Disentangling the relation-
ship between abnormal node properties and abnormal networkswill be
a challenge for future studies.We therefore suggest to carefully observe
the contributions to connection weights of spatial features such as re-
gion size/volume, fibre trajectory length, and Euclidean distance be-
tween regions. Indeed, how one defines connectivity will certainly
impact the results, and consequently the interpretation.

Supplementary data related to this article can be found online at
http://doi.dx.org/10.1016/j.nicl.2015.02.004.
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