
P

P
a

b

c

d

a

A
R
R
A

K
C
P
C
N
O
T

1

a
W
(
i
e
a
o
f
e
m
M
i
m
e
C
n
p
t

j
f

0
d

Journal of Neuroscience Methods 184 (2009) 357–364

Contents lists available at ScienceDirect

Journal of Neuroscience Methods

journa l homepage: www.e lsev ier .com/ locate / jneumeth

arallel calculation of multi-electrode array correlation networks

edro Ribeiroa,∗, Jennifer Simonottob,c, Marcus Kaiserb,c,d, Fernando Silvaa

Universidade do Porto, Faculdade de Ciências, CRACS Research Center, Rua do Campo Alegre 1021/1055, 4169-007 Porto, Portugal
School of Computing Science, Newcastle University, Claremont Tower, Newcastle-upon-Tyne NE1 7RU, UK
Institute of Neuroscience, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK
Department of Brain and Cognitive Sciences, Seoul National University, Shilim, Gwanak, Seoul 151-747, Republic of Korea

r t i c l e i n f o

rticle history:
eceived 27 January 2009
eceived in revised form 3 August 2009
ccepted 4 August 2009

eywords:

a b s t r a c t

When calculating correlation networks from multi-electrode array (MEA) data, one works with extensive
computations. Unfortunately, as the MEAs grow bigger, the time needed for the computation grows
even more: calculating pair-wise correlations for current 60 channel systems can take hours on normal
commodity computers whereas for future 1000 channel systems it would take almost 280 times as long,
given that the number of pairs increases with the square of the number of channels. Even taking into
orrelation networks
arallel computing
ondor
euroimaging
ptical imaging
ime series analysis

account the increase of speed in processors, soon it can be unfeasible to compute correlations in a single
computer. Parallel computing is a way to sustain reasonable calculation times in the future. We provide
a general tool for rapid computation of correlation networks which was tested for: (a) a single computer
cluster with 16 cores, (b) the Newcastle Condor System utilizing idle processors of university computers
and (c) the inter-cluster, with 192 cores. Our reusable tool provides a simple interface for neuroscientists,
automating data partition and job submission, and also allowing coding in any programming language.

ble to
It is also sufficiently flexi

. Introduction

Due to new experimental techniques, the amount of neural
ctivity data from a single experiment has increased in recent years.
hereas early recordings involved single electrodes or tetrodes

a set of four electrodes), novel setups use grids of electrodes
n intracranial recordings (ECoG) on the global scale or multi-
lectrode arrays (MEAs) on the local scale. Nowadays, MEAs record
round 60 channels (or more) of 16-bit data sampled at typical rates
f 25 kHz, more than ample for both local field potentials and spikes
rom local neurons to be recorded. However, setups with 1000
lectrodes are already implemented and will become more com-
on in the next years. In addition, techniques of optical imaging or
RI neuroimaging provide millions of channels corresponding to

mage pixels or voxels, respectively. The challenges of data manage-
ent and analysis have led to several neuroinformatics (Eckersley

t al., 2003) projects including the International Neuroinformatics

oordinating Facility (INCF), the FIND Matlab toolbox for multiple-
euron analysis (Meier et al., 2008), and the CARMEN e-science
roject (Watson et al., 2007; Smith et al., 2007; Eglen et al., 2007)
o which this tool is related.

∗ Corresponding author. Tel.: +351 220402925; fax: +351 220402950.
E-mail addresses: pribeiro@dcc.fc.up.pt (P. Ribeiro),

ennifer.simonotto@ncl.ac.uk (J. Simonotto), m.kaiser@ncl.ac.uk (M. Kaiser),
ds@dcc.fc.up.pt (F. Silva).

165-0270/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
oi:10.1016/j.jneumeth.2009.08.001
be used in other high-performance computing environments.
© 2009 Elsevier B.V. All rights reserved.

Correlation of activity patterns between all pairs of electrodes
is a useful measure to analyze neural activity data. Such compar-
isons can yield a correlation network where an edge between nodes
(here: electrodes) is either weighted using the mean correlation
value (as in Fig. 3) or binary (being 1 if the correlation is above a
given threshold or 0 otherwise, as in Fig. 4). Since MEAs can record
for long periods of time, there may be non-stationarity in the time
series. To cope with this, we use sliding windows: we evaluate the
correlation on an interval of time t, then slide that interval by k posi-
tions and evaluate again, producing a series of correlation matrices
for each interval that correspond to different instantaneous net-
works. Such correlation networks, also called functional networks
(Sporns et al., 2004), have shown specific deviations in the global
network organization in schizophrenia, Alzheimer’s, and epilepsy
patients (Micheloyannis et al., 2006; Stam et al., 2007; Ponten et
al., 2007) as well as for aging in human subjects (Salvador et al.,
2005; Achard and Bullmore, 2007). It can be expected that func-
tional connectivity also relates to classes of networks at the local
scale of MEA recordings. Given functional connectivity, network
analysis (Albert and Barabási, 2002; Costa et al., 2007) can be used
to assess topological changes over time.

Correlation can be coded in a variety of programming languages,

but within the neuroscience community Matlab is an often used
tool, as it provides a wide array of ready-coded algorithms and
also allows the user to customize code in a relatively easy way.
The algorithm we devised to calculate the correlations requires a
computing time that is proportional to the square of the number

http://www.sciencedirect.com/science/journal/01650270
http://www.elsevier.com/locate/jneumeth
mailto:pribeiro@dcc.fc.up.pt
mailto:jennifer.simonotto@ncl.ac.uk
mailto:m.kaiser@ncl.ac.uk
mailto:fds@dcc.fc.up.pt
dx.doi.org/10.1016/j.jneumeth.2009.08.001


3 science Methods 184 (2009) 357–364

o
m
A
n
t
h
s
a
h
o
f

l
p
p
a
h
s
u
d
c

t
M
p
a
f
m
a

c
s
f
f
l
m
t
p
e
o
t
w
c

s
h
r
n
s
n
p
w
t

t
c
a
t
c
c
t
a
a
t
s
w

impossible(Mitra et al., 2000). However, Adapa tries to foresee the
most usual division patterns arising in scientific applications and
58 P. Ribeiro et al. / Journal of Neuro

f channels C (all-to-all) and also proportional to the number of
easured values V (that is, the order of complexity is O(C2V)).
s we increase the time interval t, or the size of slide k, the time
eeded to calculate increases significantly. Current MEAs and
ypical choices of the parameters can lead to spending many
ours, even days, to calculate correlation networks on normal
erial commodity computers. We can expect that larger MEAs will
ppear, with the number of channels in the order of a 1000 and
igher temporal resolution, thus leading to an increased number
f values in the time series. This can make it unfeasible to calculate
eatures like the correlations networks in real time.

One way we can improve the time needed to complete the calcu-
ations is by using the power of parallel computing, using multiple
rocessors to jointly perform all the computation needed. In our
articular situation we had two computational resources available:
single cluster with 16 processors, and a big pool of more than two
undred university computers. Both shared the same job control
ystem: Condor (Thain et al., 2005), but others could have also been
sed. As we will see in Section 3, the correlation problem we were
ealing with has inherent data parallelism, and therefore is a good
andidate to parallel calculation.

Python has been proposed as a means to speed up calculation
ime (Spacek et al., 2008), including parallel computing via Open

PI (Ince et al., 2009). However, existing algorithms need to be
orted to this new language, which may not be feasible for large
mounts of legacy code. A first step towards automatic code trans-
er are recently developed compilers from Matlab, the currently

ost widely used environment for data analysis, to Python (Jurica
nd van Leeuwen, 2009).

A problem with parallelization is that the typical scientist not
oming from a computer science background is used to normal
erial tools and the amount of work involved getting up to speed
or running even the simplest application in parallel can deter one
rom using it (Pancake, 2003). Factors prohibiting the use of paral-
el computing range from the need of recoding programs using the

essage passing interface (MPI) to availability of computing clus-
ers and getting permission to use such systems. There are many
ossible applications for data parallelism in the realm of neural sci-
nce (Oppenheim et al., 1992; Martino et al., 1994) (and also outside
f it). The scientists may want to run code in a scalable way in order
o test some new idea. There is a need, then, for more seamless
ays of providing parallel computing power to the neuroscience

ommunity.
We could have used an existing parallel software framework,

uch as MPI, but that would require the need for the scientist
imself to understand the mechanisms and syntax of MPI, would
equire the usage of a language with an MPI interface, and it would
ot be suitable to use with Condor (MPI needs dedicated clusters,
ince all the processes are running at the same time and commu-
icating between themselves). We could have used a specialized
latform for data intensive tasks like Bialecki et al. (2009), but that
ould require that our existent code would have to be changed and

he the cluster would have to support this specific file system.
Although we had available a large Condor platform, we decided

o construct a more general and reusable tool to run parallel appli-
ations on multiple computing platforms. Our target applications
re very specific: they invoke tasks that are inherently parallel, in
he sense that parallelism arises from the split of data among the
ompute nodes. Each node then executes the same task on its spe-
ific given data and the global result can be obtained by aggregating
he results of all local computations. Splitting of data can be fully

utomated or guided by parameters provided by the user. Data par-
llelism has the potential to induce an almost linear speedup of
he computation and makes it possible to deal with data inten-
ive applications in an efficient and scalable way. In addition, we
anted the tool to be easily ported to similar environments that
Fig. 1. Architecture workflow of Adapa. The data is divided into smaller partitions
that are then submitted to the computation environment. A set of results is then
obtained and aggregated to form the end global result.

do not use Condor, but use other batch submissions systems, like
Torque/PBS (Torque, 2009; PBS, 2009) or sun grid engine (SGE)
(Gentzsch, 2001), which are widely used in clusters all around the
world. Finally, we wanted the possibility for the user of writing the
specific calculation code (in our case the correlation) in any given
language, as long was it would be executable on the targeted com-
puters. This way, the scientist can still use his familiar programming
language, instead of having to learn a new language to be able to
use an API for a specific parallel framework.

The remainder of the paper is organized as follows. Section 2
briefly describes the proposed tool, by showing all its components
and control flow. Section 3 describes how we used the tool in our
specific application of calculating correlation networks. We use real
and random data and show execution times in Condor and other
environments. Section 4 concludes the paper, discussing the results
and including some possible future work.

2. Materials and methods

In this section we describe the main design ideas of our frame-
work, which we call Adapa (Automatic DAta PArallelism).1 It aims
to simplify the use of a cluster/grid environment by non-specialists
and allows users to prepare, submit, compute and gather results.
Adapa was developed in C++ in a modular way allowing for future
reuse and extendability to new functions or other systems.

The basic workflow of Adapa is divided in four major phases, as
illustrated in Fig. 1. A first preparation phase involves dividing data
according to the user specifications into separate data files (called
partitions) and creating job submission files to run on the system.
The second phase is for job submission to the execution nodes. The
third phase is the actual execution of the jobs, and the final step is
to collect and aggregate the results.

Each application we want to run is called an experiment in the
context of Adapa, and the file system is used to maintain a different
directory for each one of them. So, one could have several exper-
iments being computed by our tool and easily navigate between
them by simply changing the directory.

We now explain the four phases of the workflow of Adapa in
more detail.

2.1. Dividing input data

To be able to exploit the potential data parallelism of a specific
experiment, it is vital to know how to divide the data into different
partitions. The main idea is that different processors can compute
different partitions at the same time, thus reducing the total time
needed for the whole computation.

Knowing how to divide for the general case of any algo-
rithm in an optimized way is very difficult, and perhaps even
automates the division step, giving three basic division profiles:

1 Adapa is also the name of a Babylonian mythical figure.



P. Ribeiro et al. / Journal of Neuroscienc

Fig. 2. Example of data division of nine intervals for three processors. Each interval
h
t
s
fi

•

•

•

e

i
u
(

d

2

s
C
w
o
p
o
A
m
t

p
p
P
g
w
a
i
t
s

as size t and differs from the last one by a slide of k positions. Each processor gets
he same amount of data (three intervals each) and two “consecutive” processors
hare only a small amount of equal data (with exactly size t − k, depicted in the
gure as shaded grey).

Equally sized independent partitions: The data is divided into
a series of equally sized, independent and consecutive partitions.
So, if we have n values and we want p partitions, each one will
roughly have n/p values. Adapa allows the user to do this kind
of division either by specifying the desired number of partitions
(where it automatically determines their size) of by specifying
each partition size (where it automatically determines the total
number of partitions);
Sliding window partitions: The data is divided into a series of
equally sized partitions of size t, each one obtained by sliding a
window of size t by a determined number of values k (the user
specifies t and k). Fig. 2 exemplifies this division scheme with nine
partitions for three processors;
Customized partitions: The user specifies the start and end
points of each partition (overlapping is allowed). This adds extra
flexibility in the case one wants a different division pattern and
virtually allows any possible scheme. The user has to give the list
of correspondent integer pairs and can potentially even use other
programs to generate that list.

It should be noted that new automated division schemes can
asily be added in the future, given the modular nature of our tool.

Besides indicating how to divide the data, the user can also spec-
fy the type of data used. Currently Adapa supports fixed-size (the
ser specifies the number of bytes per value) or one value per line
typical in ASCII files) data streams.

The end result of this step is a series of files with the data already
ivided.

.2. Submitting data

To submit the data to a node for execution, we need to talk to a
ystem that manages the computation work. In our case, we chose
ondor as the initial specific system to interact with (presently
e have already extended it to other batch systems, such as SGE

r PBS/torque). In order to submit a job to Condor, one needs to
repare a submission file, indicating details such as the input, the
utput and what files we need to transfer to the execution node.
dapa generates this file automatically and then calls the Condor
echanism to put all partition jobs as a single independent job on

he job queue, waiting to be executed.
There are several interfaces to Condor. We opted to use the sim-

lest one, a command line interface, since it was the option that
romised to have the better performance. The Grid ASCII Helper
rotocol (GAHP, 2009) is a more general way of interacting with
rid systems, available in Condor, but it poses several problems

ith scalability. One could also use BirdBath (Chapman et al., 2005)

s a way to call Condor functions using Web Services and SOAP, but
n our case it would mean that we would need to augment the func-
ionality of the existing Condor daemons by installing the necessary
oftware, which was not desirable as a readily running solution
e Methods 184 (2009) 357–364 359

that required a minimum environment “tweaking” was sought
after.

Adapa is prepared for two different scenarios: shared disk space
among processors and no sharing at all. In the first case, no data in
itself needs to be sent, since the processors can access the divided
files directly (and the responsibility of managing this access lies
outside our tool, that is on the chosen shared file-system).

In the second case, given that the data to be sent to each node
can be potentially very large, Adapa provides functionality to auto-
matically compress and send the data as well as to decompress at
the node before calling the executable. One can use any compres-
sor, as long as the commands for compressing and uncompressing
are available by command line at each node.

Adapa also supports heterogeneous environments in the sense
that it is possible to specify different executables to be run on dif-
ferent end systems. For example, one could provide an executable
to be run for Windows 32-bit architecture and another for Linux
64-bit architecture.

2.3. Executing the task

The key component of the computation is the actual program
that is going to process the data itself. In Adapa, the executable
to be called is completely customizable in the sense that we just
provide the executables we want to be run, written in any language
we want. Condor provides several universes (e.g. Vanilla, suitable
for any executable or Java, preferred for running Java applications),
and Adapa gives the user the option to choose the universe in which
the user wants to run the executable.

In order to communicate with the executable there are two main
options: one could use the standard input to the program or use the
command line arguments in which we call the executable. Adapa
allows both. Each executable receives information on which files it
has available (like size and name) by being fed an input file which
was created during the division phase. Condor provides the mecha-
nism to transfer all relevant files to the node where the computation
is to be run and also takes care of giving our input to the program
itself. With this, one only needs to specify to the executable the
format in which this input will be given. The tool and the submis-
sion system take care of all the rest, guaranteeing that all jobs are
correctly started on the correspondent processors.

2.4. Collecting results

The execution of jobs produces in the end a series of result files.
The user can use Adapa to automatically concatenate those to a sin-
gle file (the inverse of partitioning the data) or to specify a custom
command that can apply more complex functions to the output
(e.g. additional analysis). Another option is to simply do nothing to
the result files, since they may already be in a format that we can
use for further analysis and computations.

2.5. Usage, quality of service and fault tolerance

Adapa is currently used via the command line (a graphical user
interface is planned). In order to define all the parameters for which
we want our application to be run, we have to edit a series of doc-
umented text files. We can have several experiments in different
stages of the execution, each one of them in an independent direc-
tory with its own configuration files specifying things like how to
divide the data and what executable we have to run.
Adapa can be directly called for each specific phase. One can
simply ask Adapa to: (a) divide the data, without actually submit-
ting it (to preview the resulting division); (b) tell the tool to submit
an already partitioned data; (c) collect the data; or (d) run all above
steps.



3 science Methods 184 (2009) 357–364

(
t
r
i

o
w
a
d
s

2

a
a
w
b

r
b
n
w
c
w
c
t
(
a
O
o
g

3

o
b
u
o
a
i
l
n
o
F

t
n
m
n
t
w
w
a
d
t
m
f
m

a

Fig. 3. Resting state cross-correlations across all channels. Channel pairs make up

3.1. Type of correlation and data used

In our tests, we experimented with code based on the following
correlation formula (which outputs a number between −1 and 1
60 P. Ribeiro et al. / Journal of Neuro

At any time, Adapa provides ways to see what jobs are running
including running time), what jobs are still in the queue, to cancel
he experiment or to specifically ask for a particular partition to be
un again. In order to do that, the batch submission system interface
s used.

Our tool also relies on the batch system to provide some quality
f service. Instead of trying to do everything ourselves, we let it do
hat it is suited for, like deciding the best available resources, or

utomatically restarting a job which was compromised. Adapa only
ivides and creates the jobs; it is the high performance computing
ystem that determines the best way to run them.

.6. Availability and potential uses

Adapa is now on a functional prototype phase, where it can
lready be used by real scientists. After doing some more tests, cre-
ting a graphical user interface and the necessary documentation,
e plan to make the tool available online, under a GPL license, to

e available to anyone who wishes to use it2 (Ribeiro et al., 2009).
The next section describes how we used Adapa to calculate cor-

elations but as we saw in the previous sections the tool can really
e used in other situations that exhibit data parallelism. All the user
eeds is: (1) a high performance resource (like a Condor Pool) to
hich Adapa can communicate with; (2) the data files; (3) an exe-

utable program in the desired platform able to calculate the result
hen fed with a chunk of data (a partition). Note that the executable

an be written in any language, therefore allowing the user to resort
o a familiar environment. Without significant code-level tinkering
besides being able to read from Adapa the information regarding
single partition), one can then easily parallelize the application.
ur tool then takes care of the real more tedious and long task
f physically splitting the data, submitting, managing the jobs and
athering the results.

. Results

As mentioned in the introduction, we want to generate not
nly one correlation network, but many, in order to investigate
oth static and dynamic properties of the time series data. We
se sliding windows, evaluating the correlation on an interval Ti

f time t, and then sliding that interval by k positions and evalu-
ting it again, producing a series of correlation matrices for each
nterval Ti. Each of these matrices has one value for the corre-
ation of each pair of channels, and defines different correlation
etworks that evolve as time goes by. An example data partition
f nine intervals for three processors is graphically depicted in
ig. 2.

We can use Adapa to automate this partition scheme, dividing
he data and feeding each executable with the values for all chan-
els in its partition. Note that we could also divide the problem in
ore than one dimension (for example analyzing only certain chan-

els withing the same job) but this might create some repetition in
he data among different jobs (the same part of the same channel
ould have to be on every node that was calculating a correlation
ith that part of the channel), which would cost time. As long as
single correlation interval is small enough, making it possible to
ivide the data using each correlation interval as an indivisible unit,

his simple scheme of partitioning among one dimension is opti-

al in what respects to the maximum gain in efficiency. The reason
or this is that we can provide equal shares to each processor and

inimize overlapping data between them.

2 Currently the tool is available by special request by sending a mail to the contact
uthor.
the x- and y-axes, and gray scale color indicates the intensity of correlation between
the channels. Since the measure is symmetric between pairs, only half of the data
points were calculated and shown (reflecting along the cha = chb line). In this plot
we see that some channels are generally much more correlated with other channels.

The real data used in this paper was generated within the
CARMEN project (http://www.carmen.org.uk). CARMEN (Code,
Analysis, Repository and Modelling for e-Neuroscience) is an e-
science project that seeks to provide an infrastructure in which
code, data, etc., can be shared between neuroscience researchers.
The particular dataset used was spontaneous firings from a wild-
type (WT) mouse retina recorded on a MEA. This is an interesting
test-bed for spatio-temporal measures because over the develop-
mental period, the retina changes from a wave-supporting medium
(with more short-term connections) to one, which no longer sup-
ports waves, but has developed long-term connections within
the retina. For analysis purposes, data is not filtered, but the DC
offset is removed. Figs. 3 and 4 show preliminary results from
cross-correlation analysis across regions; Fig. 3 shows resting state
correlation (between successive waves), while Fig. 4 shows dynam-
ical activation (during a wave), highlighting which nodes are highly
correlated with which other nodes.
Fig. 4. Dynamic cross-correlations across all channels during a bursting event on
the retina. Circles represent the physical electrode arrangement of the MEA (8 × 8
array with four corners missing), and lines between electrodes represent a pair-
wise correlation above the threshold of 0.3. The color of the electrode indicates the
average correlation strength of that channel (to all other channels; i.e. resting state).
During this bursting event, connectivity is markedly different from the resting state
connectivity.

http://www.carmen.org.uk


P. Ribeiro et al. / Journal of Neuroscience Methods 184 (2009) 357–364 361

Table 1
Serial calculation time in seconds for C channels and V values (factors in parentheses are relative to the scenario with 64 channels (of random data) and 250,000 values).

C V

250,000 500,000 1,000,000 2,000,000

)
)
6)
.1)

i

C

c
s
p

n
v
g

d
d
t

(

3

T
w
o
n
s
o
o
a
t
t
r

w
m
a
u
b
t
T

d
o
1
s
r

3

w
e
t
b
c

We can see that as we use more processors, Adapa takes less time
to execute. Despite the time for dividing remaining almost constant
(at 3 s), it starts to influence the global time more and more since
the total time really becomes small. However, the real bottleneck of
64 7.71 s (=1.0) 14 s (× 1.8
128 30 s (× 3.9) 59 s (× 7.7
256 122 s (× 15.8) 244 s (× 31.
512 490 s (× 63.6) 988 s (× 128

ndicating the correlation between x and y):

orr(x, y) =
∑

(xi − x̄)(yi − ȳ)√∑
(xi − x̄)2

√∑
(yi − ȳ)2

(1)

We calculated the correlation in several data files of 25 kHz, 60-
hannel MEA retina data. We also used random data, in order to
tudy the scalability with an increasing number of channels or other
arameters that were not present in the experimental data.

In what follows in this section, C indicates the number of chan-
els of the experiment and V indicates the number of different
alues in one channel’s time series. All random data is uniformly
enerated with numbers between 0 and 5000.

We will only measure the time it takes to go from the original
ata file to the correlation matrices, since they implicitly already
efine the correspondent network, and the real bulk of the work is
he all-to-all correlation calculation.

We ran our tool with correlations intervals of size 20,000
∼0.8 s), with a sliding window of 10,000 (∼0.4 s overlap).

.2. Evaluation

We evaluated Adapa in three different kinds of environments.
he first one was a dedicated Condor cluster (HP ProLiant server)
ith four quad-core Xeon processors (2.93 Ghz), each one with 8 GB

f memory, totaling 32 GB. This cluster has a shared file system (no
eed to copy files around) and therefore provides a very reliable and
elf-contained environment for repeated experimentation. Due to
ther experiments running we were limited to using a maximum
f 10 processors at any given time, but those cores were always
vailable, meaning that if we divided the data in 10 or fewer parti-
ions, then the same number of CPUs would be used in parallel at
he same time. This dedicated cluster was used for obtaining the
esults in Sections 3.2.1 and 3.2.2.

The second one was the Newcastle University Condor Pool,
hich had available more than 200 Linux computers. This is a much
ore heterogeneous environment (in terms of processor speed,

vailable memory, etc.) and much less resilient (Condor harvests
nused computation cycles—if someone uses the computer key-
oard, for example, the computation stops) and unreliable (given
he dimension, there can be computers with hardware failures).
his environment was used for the results in Section 3.2.3.

The third and last environment used was inter-cluster. This is a
edicated cluster with 12 SuperMicro Twinview Servers for a total
f 24 nodes. Each node has 2 quad core Xeon 5335 processors and
2 GB of RAM, totaling 192 cores, 288 GB of RAM, and 3.8 TB of disk
pace, using Infiniband interconnect. This cluster was used for the
esults in Section 3.2.4.

.2.1. Serial calculation
In this section we show how our correlation algorithm behaves
hen being run in serial mode, that is, when no parallelism is
xplored. This can give us a better feel of how much time it takes
o calculate something and if parallelism is really needed. As said
efore, we used the dedicated cluster for this, but only with one
ore active at a given time. We used random data (64 channels, cho-
30 s (× 3.9) 60 s (× 7.8)
124 s (× 16.1) 251 s (× 32.6)
498 s (× 64.6) 1002 s (× 130.0)

1978 s (× 256.5) 3996 s (× 518.3)

sen to closely mimic the computation load of current MEA analysis
needs), in order to produce the desired number of values. Table 1
summarizes the results.

All times are compared to the time taken for 64 channels (of
random data) and 250,000 values, which was therefore the only
value calculated with more precision. Its final value is the average
of 5 runs, rounded to 2 decimal digits. All other values are rounded
to seconds.

The table shows that, as expected, the runtime has a behavior
asymptotically similar to C2V . With this in mind we can easily have
a rough estimate of how much time a given correlation calculation
is going to take in serial on this environment:

time(C, V) = 7.72 × V

250, 000
×

(
C

64

)2

(2)

For example, with the current usual 60 channels, calculating cor-
relation of 1 h of data at 25 kHz (90,000,000 values) would take
46 min. If we wanted the same calculation for 1000 channels, we
would need almost 8 days!

3.2.2. Small dedicated cluster
We ran our algorithm on the dedicated small cluster with a real

data file of 60 channels with about 6 min of data (8,735,000 values).
We varied the number of partitions, and therefore the number of
CPUs used (we always had enough CPUs to assign one per partition).
The results we obtained are depicted on Fig. 5. The time spent is the
total, including all steps of the process (dividing, submitting, calcu-
lating and aggregating). We can also perceive the partial weight of
the division step.
Fig. 5. Time spent in calculating correlations matrices for a real data file. The file
contains 60 channels of data, each one with 8,735,000 values. In parenthesis we can
see the percentage of time spent in dividing the data (which is done in serial).



362 P. Ribeiro et al. / Journal of Neuroscienc

Fig. 6. Speedup when calculating correlation matrices for a real data file. The date
is the same as in Fig. 5.

Table 2
Time to calculate random data when we vary the number of values.

C = 64

#V CPUs Time spent

2,000,000 1 68 s (=1.0)

t
I
c
d
c

p
c
c
a

o
t
p
t
t
e
t

w
w
t
fi
o

T
T

4,000,000 2 67 s (× 0.99)
8,000,000 4 70 s (× 1.03)

16,000,000 8 73 s (× 1.07)

he application, as expected, is the correlation computation itself.
f we use artificial random data, the results are similar, because, the
alculation itself does not depend on the actual values used. It only
epends on the quantities assigned to each parameter (number of
hannels, number of values, size of windows, and size of slide).

Fig. 6 shows the ratio of the time Adapa takes to execute using n
rocessors relative to the time it takes on a single processor. This is
alled the speedup. We can see that it is almost linear with a slope
lose to one. This shows that up to this size of the problem, our
pproach appears to be scalable.

Let us examine the scalability of our application by varying some
f the parameters that can influence the time spent on the calcula-
ion. We want to support the assumption that the algorithm used is
roportional to the number of values by showing that as we double
he number of values we need twice as many processors to finish in
he same time. Table 2 shows what happens when we fix everything
xcept the number of values V and the number of CPUs, confirming
he expected.

We also want to show that as we double the number of channels,
e need four times more processors to compute in the same time,

hich would agree with the notion of time being proportional to

he square of the channels. Table 3 shows results from when we
x everything except the number of channels C and the number
f CPUs, also confirming what we previewed. Note that we do not

able 3
ime to calculate random data when we vary the number of channels.

V = 2, 000, 000

#C CPUs Time spent

64 1 68 s (=1.0)
128 2 131 s (× 1.93)
256 4 254 s (× 3.74)
512 8 518 s (× 7.62)
e Methods 184 (2009) 357–364

use the quadruple number of processors in each following iteration
since we had a limited number of processors available.

All of this shows that Adapa seems to scale well and as expected
(given that the complexity beneath the calculation) grows in a way
asymptotically similar to C2V .

3.2.3. Newcastle University Condor pool
In the Newcastle Condor pool, with dynamic, competitive and

heterogeneous environment, the best option seems to be to divide
the data as much as possible, as long as the different partitions
take some time (more than a few seconds). We lose some time
when starting the jobs and they have a small fraction of shared
data between them, but we gain more robustness to unreliabil-
ity (because stopping a job, will cost us less) and heterogeneity
(because faster processors can process multiple chunks of data –
jobs – during the time another processor calculates only one). In
this case, we also need to transfer files, since there is no global
shared file-system.

The time it takes to run a complete calculation is very difficult to
predict and it depends on the current system conditions and net-
work topology. What matters most is that, in practice, the resource
can be used to effectively cut the time needed to calculate the cor-
relation networks. Adapa was effectively used to submit jobs to the
pool. The current experiment only uses Linux executables but if one
had a different operating system available, we would also be able
to submit the respective binaries.

We first used the same real data file described in Section 3.2.2.
We divided it into 50 small partitions and the whole computation
took less than 3 min to execute and produced a correct and valid
output, despite the complex environment. The maximum amount
of computers used at the same time was 13, but this was only
because the Condor system did not assign us more.

We also ran an experiment with 16 different real data files,
also with retina data (25 kHz, 60 channel). We divided each one
in 5 chunks and submitted all 80 partitions. This would take more
than 8 h on a single fast processor of the dedicated cluster we used
before (2.93 GHz) but on the Condor Pool it took only 25 min (using
at most 26 computers at the same time). Again, the results were
correctly calculated, with no error reported, with Condor provid-
ing the quality-of-service and guaranteeing that when a job was
abnormally terminated, it would be respawn (that is, resubmitted
to another processor in the pool).

A better study of these parallel performance results is out of the
scope of this paper. We mostly wanted to show that in a simple way
we can effectively take advantage of commonly existing comput-
ing resources that are otherwise not being used. Adapa effectively
leverages the access to a complex high performance system.

3.2.4. Inter-cluster
We wanted to assess the potential of Adapa in a larger scale and

in a different batch system. The inter-cluster provided us with that
opportunity. Inter-cluster uses the torque/PBS submissions system,
which was an opportunity to prove that Adapa can be extended in
a simple way to other batch submissions systems. By using again a
command line interface, the tool can communicate with it in a sim-
ilar fashion to Condor. This of course required some programming
effort from our side, but it is only made once and then any scien-
tist can use any system with that particular submissions system.
In practical terms, basically we have to understand the syntax of
Torque and code a single module implementing all primitive func-
tions, such as sending a job or checking its status. After doing that,

from the point of view of the user, it is exactly the same as using
Condor. Obviously, a parameter must be set indicating that we will
be using torque.

Table 4 shows the results of running the correlation calculation
for a piece of random data with 1,290,000 values and 1000 channels



P. Ribeiro et al. / Journal of Neuroscienc

Table 4
Time to calculate a random data file in inter-cluster (factors in parentheses are the
speedup relative to the scenario with one CPU).

#CPUs Total time Time in calculation % time in division

1 15089.1 s (=1.0) 15089.1 s (=1.0) 0.00%
2 7052.8 s (× 2.14) 6905 s (× 2.19) 2.10%
4 3787.3 s (× 3.98) 3637 s (× 4.50) 3.97%
8 2277.1 s (× 6.63) 2127 s (× 7.09) 6.59%

u
(
s
d
p

w

b
t
M
c
s
w
b
i
s
p

c
p
b
j
n
t
C
t
u
f
l
t
c
a
b
i
c

r
s

4

n
t
m
t
t

i
o
t
i

Ince RA, Petersen RS, Swan DC, Panzeri S. Python for information theoretic analysis
16 1430.5 s (× 10.55) 1275 s (× 11.83) 10.87%
32 1105.2 s (× 13.65) 947 s (× 15.93) 14.31%
64 1024.9 s (× 14.71) 867 s (× 167.50) 15.41%

p to 64 processors. Note that the size of each correlation interval
20,000) and the size of the sliding window (10,000) is still the
ame as in the other experiments. Therefore, 1,290,000 is equally
ividable by any number power of two, precisely the number of
rocessors that we are going to test.

We start with a calculation that takes more than 5 h in serial and
e end up spending less than 20 min with 64 processors.

However, the scalability is far from optimal. For once, it is limited
y the division of the files, which is made in serial and therefore
akes an almost constant time (varying between 147 and 157 s).

ore than that, in this specific case, we made the division on the
luster itself and it takes more time than on a commodity computer
ince the file system is more complex and network shared. One
ay to avoid this division bottleneck would be for the submitted

inaries to directly access the original data file and merely take
n consideration which part of the data it should access. If the file
ystem used is capable of supporting multiple access, this could
rovide a substantial improvement in the speedup.

Note also the speedup if we take only into consideration the
alculation step. It is lower than expected (since this part is com-
letely parallel, the optimum would be linear speedup). This can
e due to many factors, like the network congestion when multiple

obs are accessing files on the shared file system. Note also that no
otion of data locality is used, since all executables try to access
he same file system. Further, we should also note that contrary to
ondor, this particular implementation of torque did not provide
he built-in capability of array submission, that is, the capacity to
nderstand that several copies of the same executable are actually
rom the same job and being executed at the same time. This can
ead to a bad use of the cores, in the sense that it is not guaran-
eed that different jobs on the same node are really using different
ores. However, other systems could provide this array function-
lity and Adapa would use that if possible, leading to potentially
etter results. As a side effect of all this, certain nodes are finish-

ng their calculations earlier than others and therefore potential
omputation power is being wasted.

The bottom note is that again Adapa was used to obtain correct
esults, this time on a different environment and with a much larger
cale.

. Discussion

In this paper we presented a method to calculate correlation
etworks in parallel. By doing that, we also presented a tool and
he architecture to aid in automating data distribution and job sub-

ission for applications that exhibit parallelism at data level. The
ool also allows the usage of different programming languages for
he implementation of the algorithms.

We implemented an initial functional prototype and proved that

t can be used to achieve higher throughput in a single cluster,
btaining an almost linear speedup for an example real applica-
ion. We also used it in a real Condor pool and paved the way for
ts use on a more heterogeneous environment.
e Methods 184 (2009) 357–364 363

During the experimentation we discovered that our application
has the potential for being scalable to a large number of processors.
However, there is a limitation in that we must choose a problem
big enough in terms of real calculation to minimize the influence of
the division, which is made in serial, exploiting no parallelism at all.
Such a problem would be motif discovery (Milo et al., 2002; Sporns
and Kötter, 2004) in correlation networks where the bottleneck is
not only given by the number of nodes in the network and the size
of the motifs but also by how many different correlation networks
can be generated within a recording session.

There are also several possible improvements on the software
development side. First, we need to have access to a real life more
up-to-date Condor pool to better test Adapa’s behavior. This will
be used to test additional features such as data compression before
sending data over the network. We would also like to test other
applications with our platform, particularly written in other pro-
gramming languages. Second, we also think it would be beneficial
to skip the division phase and directly access the data in shared
file systems. Such a procedure could take advantage of dedicated
clusters and provide better results using less time. Third, we want
to compare our approach in terms of results, to a more specialized
solution like Hadoop (Bialecki et al., 2009). This could be done by
letting Adapa interface between the user and the Hadoop platform.
Finally, we plan to experiment in how Adapa could be used for
real-time analysis of a stream of data (currently it is more suited to
offline analysis of previously obtained data).

In conclusion, this work shows that our tool can be used for par-
allel processing of neuroscience multi-channel data across a range
of operating and grid computing systems. By providing a simple
and extendable tool, we hope to reduce the entry barriers for using
parallel computing to analyze large-scale neuroscience data sets.

Acknowledgements

We thank Enrico Pontelli for the use of inter-cluster in the New
Mexico State University. Within CARMEN, we particularly thank
Evelyne Sernagor’s lab for providing the experimental data with
which this code was tested. This study was financially supported by
FCT (SFRH/BD/19753/2004), the Royal Society (RG/2006/R2), and
EPSRC (EP/E002331/1).

References

Achard S, Bullmore E. Efficiency and cost of economical brain functional networks.
PLoS Comput Biol 2007;3(2):e17.

Albert R, Barabási AL. Statistical mechanics of complex networks. Rev Mod Phys
2002;74(1):47–97.

Bialecki A, Cafarella M, Cutting D, O’Malley O. Hadoop: a framework for running
applications on large clusters built of commodity hardware. (August 2009)
http://hadoop.apache.org/.

Chapman C, Goonatilake C, Emmerich W, Farrellee M, Tannenbaum T, Livny M, et
al. Condor BirdBath: Web service interfaces to Condor. In: Cox SJ, Walker DW,
editors. Proceedings of the UK e-Science All Hands Meeting 2005. Nottingham,
UK; 2005: 737–44.

Costa LDF, Rodrigues FA, Travieso G, Villas Boas PR. Characterization of complex
networks: a survey of measurements. Adv Phys 2007;56:167–242.

Eckersley P, Egan GF, Amari S, Beltrame F, Bennett R, Bjaalie JG, et al. Neuroscience
data and tool sharing: a legal and policy framework for neuroinformatics. Neu-
roinformatics 2003;1:149–65.

Eglen SJ, Adams C, Echtermeyer C, Kaiser M, Simonotto J, Sernagor E. The carmen
project: Large-scale analysis of spontaneous retinal activity during develop-
ment. In: European retina meeting; 2007.

GAHP, Grid ASCII Helper Protocol. (August 2009) http://www.cs.wisc.edu/
condor/gahp/.

Gentzsch W. Sun grid engine: towards creating a compute power grid. In: Buyya
R, Mohay G, Roe P, editors. Proceedings of the first IEEE/ACM international
symposium on cluster computing and the grid. USA: IEEE Press; 2001. p. 35–6.
of neural data. Front Neuroinform 2009;3:4.
Jurica P, van Leeuwen C. OMPC: an Open-Source MATLAB-to-Python Compiler. Front

Neuroinform 2009;3:5.
Martino RL, Johnson CA, Suh EB, Trus BL, Yap TK. Parallel computing in biomedical

research. Science 1994;265:902–8.

http://hadoop.apache.org/
http://www.cs.wisc.edu/condor/gahp/


3 scienc

M

M

M

M

O

P

P
P

R

64 P. Ribeiro et al. / Journal of Neuro

eier R, Egert U, Aertsen A, Nawrot MP. FIND—a unified framework for neural data
analysis. Neural Networks 2008;21:1085–93.

icheloyannis S, Pachou E, Stam C, Breakspear M, Bitsios P, Vourkas M, et al.
Small-world networks and disturbed functional connectivity in schizophrenia.
Schizophr Res 2006;87:60–6.

ilo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U. Network motifs:
simple building blocks of complex networks. Science 2002;298(5594):824–7.

itra S, Kothari SC, Cho J, Krishnaswarmy A. Paragent: a domain-specific semi-
automatic parallelization tool. In: Valero M, Prasanna VK, Vajapeyam S, editors.
HiPC, vol. 1970. Springer; 2000. p. 141–8.

ppenheim MI, Factor M, Sittig DF. BIO-SPEAD: a parallel computing environment
to accelerate development of biologic signal processing algorithms. Comput
Methods Programs Biomed 1992;37:137–47.

ancake CM. Usability issues in developing tools for the grid—and how visual rep-
resentations can help. Parallel Process Lett 2003;13(2):189–206.
BS, OpenPBS at PBS gridworks. (August 2009) http://www.openpbs.org.
onten S, Bartolomei F, Stam C. Small-world networks and epilepsy: graph theo-

retical analysis of intracerebrally recorded mesial temporal lobe seizures. Clin
Neurophysiol 2007;118:918–27.

ibeiro P, Simonotto J, Kaiser M, Silva F. Adapa download site. (September 2009)
http://www.dcc.fc.up.pt/adapa/.
e Methods 184 (2009) 357–364

Salvador R, Suckling J, Coleman MR, Pickard JD, Menon D, Bullmore E. Neurophysi-
ological architecture of functional magnetic resonance images of human brain.
Cereb Cortex 2005;15(9):1332–42.

Smith L, Austin J, Baker S, Borisyuk R, Eglen S, Feng J, et al. The CARMEN e-Science
pilot project: Neuroinformatics work packages. In: Cox, S.J., editor. Proceed-
ings of the UK e-Science All Hands Meeting 2007. Nottingham, UK; 2007: 591–
98.

Spacek M, Blanche T, Swindale N. Python for large-scale electrophysiology. Front
Neuroinform 2008;2:9.

Sporns O, Chialvo DR, Kaiser M, Hilgetag CC. Organization, development and function
of complex brain networks. Trends Cogn Sci 2004;8:418–25.

Sporns O, Kötter R. Motifs in brain networks. PLoS Biol 2004;2(11).
Stam C, Jones B, Nolte G, Breakspear M, Scheltens P. Small-world networks and

functional connectivity in Alzheimer’s disease. Cereb Cortex 2007;17:92–9.
Thain D, Tannenbaum T, Livny M. Distributed computing in practice: the Condor
experience. Concurrency-Pract Ex 2005;17(2–4):323–56.
Torque, Torque Resource Manager at Cluster Resources, Inc. (September 2009)

http://www.clusterresources.com/products/torque-resource-manager.php.
Watson P, Jackson T, Pitsilis G, Gibson F, Austin J, Fletcher M, et al. The CARMEN

neuroscience server. In Cox SJ, editor. Proceedings of the UK e-Science All Hands
Meeting 2007. Nottingham, UK; 2007: 135–41.

http://www.openpbs.org
http://www.dcc.fc.up.pt/adapa/
http://www.clusterresources.com/products/torque-resource-manager.php

	Parallel calculation of multi-electrode array correlation networks
	Introduction
	Materials and methods
	Dividing input data
	Submitting data
	Executing the task
	Collecting results
	Usage, quality of service and fault tolerance
	Availability and potential uses

	Results
	Type of correlation and data used
	Evaluation
	Serial calculation
	Small dedicated cluster
	Newcastle University Condor pool
	Inter-cluster


	Discussion
	Acknowledgements
	References


