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Gain control through divisive inhibition prevents abrupt transition to chaos in a neural mass model
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Experimental results suggest that there are two distinct mechanisms of inhibition in cortical neuronal networks:
subtractive and divisive inhibition. They modulate the input-output function of their target neurons either by
increasing the input that is needed to reach maximum output or by reducing the gain and the value of maximum
output itself, respectively. However, the role of these mechanisms on the dynamics of the network is poorly
understood. We introduce a novel population model and numerically investigate the influence of divisive inhibition
on network dynamics. Specifically, we focus on the transitions from a state of regular oscillations to a state of
chaotic dynamics via period-doubling bifurcations. The model with divisive inhibition exhibits a universal
transition rate to chaos (Feigenbaum behavior). In contrast, in an equivalent model without divisive inhibition,
transition rates to chaos are not bounded by the universal constant (non-Feigenbaum behavior). This non-
Feigenbaum behavior, when only subtractive inhibition is present, is linked to the interaction of bifurcation curves
in the parameter space. Indeed, searching the parameter space showed that such interactions are impossible
when divisive inhibition is included. Therefore, divisive inhibition prevents non-Feigenbaum behavior and,
consequently, any abrupt transition to chaos. The results suggest that the divisive inhibition in neuronal networks
could play a crucial role in keeping the states of order and chaos well separated and in preventing the onset of
pathological neural dynamics.
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I. INTRODUCTION

Neurons can be understood as information processing units
that transform synaptic input into a spike train output. This
transformation is often described by an input-output function,
which can be experimentally measured. Recent experiments
have demonstrated that different inhibitory mechanisms can
modulate this function [1,2]. These inhibitory mechanisms
can be considered to be either subtractive or divisive based
on the modulation that is applied on the postsynaptic neurons.
The subtractive modulation shifts the sigmoidal input-output
function to higher inputs (hyperpolarizing effect), whereas the
divisive modulation decreases the slope of the function (also
termed the neuronal gain) [3]. Recent studies demonstrated
that the two types of modulations are applied on the cortical
pyramidal neurons by two distinct inhibitory populations.
Dendrite-targeting interneurons provide the subtractive in-
hibition, whereas divisive inhibition is provided by soma-
targeting interneurons [2,4]. Additionally, the connectivity
patterns between these populations were revealed in recent
anatomical study in neocortex, where it was shown that the
dendrite-targeting interneurons inhibit the soma targeting but
not the other way around [5].

In particular, the role of divisive inhibition (i.e., gain
control) has been explored by experimental as well as
computational studies, as it is a nonlinear effect that enables
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more complex functionality into the system. Gain control
has been shown to be crucial in human vision [6], sensory
processing [7,8], gaze direction [9], selective attention [10],
and motor processing [11]. In simulated networks of neurons,
divisive inhibition was shown to prevent some problems (e.g.,
proximity to unstable behavior, sensitivity of dynamics to
connectivity parameters, and slow reaction to fast fluctuating
input) caused by the lack of divisive inhibition [12]. Addition-
ally it was shown that including divisive inhibition can improve
storage capacity in neuronal networks without compromising
its dynamical stability [13]. In terms of network dynamics,
the divisive modulation was found to regulate the duration
of the active and silent phases during rhythmic bursting
activity [14,15].

Despite these findings, there are still open questions about
the role of divisive inhibition in the overall network dynamics.
In particular, the effect on the transition between different
network states is unclear. In the present computational work,
transitions from low-amplitude oscillations to high-amplitude
paroxysmal oscillations are of interest. A high-amplitude
paroxysmal oscillation in local neocortical networks is a model
of hypersynchronous activity which indicates pathological
dynamics, as, for example, in epilepsy [16]. Experimental
studies investigated the role of different elements of neo-
cortical networks and their interaction with the thalamus in
the generation of such oscillations [17,18]. These oscillations
closely resemble the spike-wave complexes that characterize
the pathological activity during seizures. Despite the fact that
the interaction between neocortex and thalamus enhances
spike-wave complexes, it was shown that the thalamus is
not necessary for the generation or propagation of these
paroxysmal oscillations in neocortex [17,19,20]. Computa-
tional studies have used limit cycles or chaotic attractors to
model these paroxysmal oscillations [21–25]. Despite the fact
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that chaoticity is a property not always found in this type
of pathological activity, the chaotic attractors usually have
high-amplitude and complex behavior that resembles such
paroxysmal activity. Also a three-dimensional chaotic attractor
has the same dimensionality as the seizure attractors analyzed
from EEG signals [26]. For a review on seizure dynamics and
the types of attractors that are used to model this type of activity
can be found in Ref. [27]. In the present work, the transition
to paroxysmal oscillations is modeled as a transition from a
low-amplitude limit cycle (order) to a high-amplitude chaotic
attractor (chaos) in a model of local neocortical networks
which were shown to exhibit such activity even in isolation.
Furthermore, a recent study on the macroscopic behavior of
spiking neural networks verifies the coexistence of order and
chaos in local networks [28].

One intensively studied route to chaos is via a so-called
cascade of period-doubling bifurcations [29]. During a period-
doubling bifurcation, a limit cycle is replaced by a new
periodic orbit with double the period of the original orbit.
Period-doubling bifurcations are well documented in complex
neural systems, both theoretically [30,31] and experimentally
[32–34]. Additionally, cascades of period-doubling bifurca-
tions are often found preluding the onset of paroxysmal or
irregular behavior in these studies. Interestingly, the cascades
of period-doubling bifurcations can happen at a constant
transition rate, first described by Feigenbaum [35]. The Feigen-
baum constant was since found to apply universally in many
dissipative systems in nature [36–38]. The significance of
Feigenbaum universality, and particularly of the Feigenbaum
constant [35], is that it provides a prediction for the onset
of chaos in parameter space. A system complying with
Feigenbaum universality has a well-defined relative boundary
between order and chaos, whereas a system with non-
Feigenbaum behavior can exhibit abrupt transitions between
the two states. Non-Feigenbaum behavior is still an open field
of study. Some classes of such behavior have already been
characterized, mainly in discrete dynamical systems [39–41].
Examples of this behavior in continuous dynamical systems
remain poorly understood.

Previous studies of neural population dynamics reported
period-doubling transitions [24,30,31,42]. However, none of
them, to our knowledge, focused on the influence of inhibitory
mechanisms on the period-doubling cascades. The primary
aim of this study is to apply bifurcation theory and investigate
the role of divisive inhibition in a neural mass model while
it undergoes a period-doubling cascade leading to chaos. In
particular, we will explore how the system behaves in relevance
to Feigenbaum universality in two different cases: while the
model includes divisive inhibition and while it uses only
subtractive inhibition.

II. MODELS AND METHODS

A. Modeling framework

As in previous studies, neural mass models are used in
this work, giving an abstract and macroscopic description of
neocortical networks comprised of excitatory and inhibitory
populations. The dynamics arise from the interaction of
these populations which are expressed by a set of ordinary
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FIG. 1. (Color online) Schematic of the ESD model. The model
incorporates an excitatory population (E), a subtractive (S), and a
divisive (D) inhibitory population. The lower panels show how the
two inhibitory mechanisms modulate the input-output function of
their target population. Note the nonreciprocal inhibitory connection
between S and D. The external inputs to the populations are omitted
in this schematic.

differential equations (ODEs). In particular, the model used
here is an extended version of the spatially localized Wilson-
Cowan model [43], which is primarily used to model the
oscillatory behavior of neural systems [44–46]. This type of
model is conceptually simple and well studied and can be
easily analyzed using bifurcation theory [47–49]. Therefore it
is an ideal choice for investigating how abstract concepts like
subtractive or divisive inhibition can change the network’s
behavior at the population level. The model introduced here
can be considered as a generalization of the Wilson-Cowan
model [43]. This generalization can be used to model not only
subtractive inhibition, as featured in the classic model, but
also divisive inhibition. In order to achieve this, we consider
the excitation and external inputs to be the drivers of the
network, whereas the inhibition is used only to modulate
the sigmoidal input-output functions of all the units in the
network. Distinguishing between drivers and modulators in the
network is inspired by the Sherman-Guillery proposition [50].
This separation of drivers from the modulators comes in
contrast to the way that inhibition was previously modeled:
as a subtraction from the input, that is, as a negative driver.
An equivalent result can be obtained instead by shifting the
input-output function to higher inputs (see Fig. 1, bottom left),
that is, subtractive modulation of the input-output function.
This displacement represents the subtractive inhibition in the
proposed model. Similarly, the divisive inhibition can be
modeled as a gain control mechanism that decreases the slope
and maximum output of the input-output functions (see Fig. 1,
bottom right). By choosing the logistic function as the input-
output function, we can model these modulations by promoting
the constants for displacement and slope to variables that
can be dynamically controlled by the inhibitory populations
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in the model. This modification results in a function of
three variables F (x,θ,α), F : R × R+

0 × R+
0 → R. Variable

x represents the input or the driver of the unit, variable θ

represents the displacement of the sigmoidal curve along the x

axis, and variable α represents the slope of the curve. Thus, the
input-output function F (driver, subtractive modulator, divisive
modulator) is given by:

Fj (x,θ,α) = 1

1 + exp
{− αj

1+α
[x − (θj + θ )]

}
− 1

1 + exp
( αj θj

1+α

) , (1)

where the minimum displacement θj and the maximum slope
αj are constants, representing the default case when no
modulatory inhibition is delivered to the unit. Specifically,
these constants differ for different populations: j = {e,s,d} for
the excitatory, subtractive, and divisive inhibitory populations,
respectively. Note also that the last term in the expression only
depends on the variable of slope α and it is used for decreasing
the maximum value of the output along with the decrease in
slope (see Fig. 1 for a schematic).

Using the input-output function F we now have an easy way
to express subtractive and divisive modulations in the function
arguments.

1. ESD model

The model incorporating both subtractive and divisive
inhibition (the ESD model, also see Fig. 1) is given by the
following system of ordinary differential equations (ODEs):

dE

dt
= −E + (ke − E)Fe(weeE + Pe,wesS,wedD),

dS

dt
= −S + (ks − S)Fs(wseE + Ps,wssS,0), (2)

dD

dt
= −D + (kd − D)Fd (wdeE + Pd,wdsS + wddD,0),

where

kj = lim
x→+∞ Fj (x,θ,α) = exp

( αj θj

1+α

)
1 + exp

( αj θj

1+α

) , (3)

with j = {e,s,d}. The variables of the system, E, S, and
D, express the activity level of the excitatory, subtractive
inhibitory, and divisive inhibitory population respectively.
The functions Fj are the sigmoidal input-output functions
as presented above. Parameters Pj give the external inputs
to the units and they are considered to be independent of
time in this study. The refractory period (see Ref. [43]) is
assumed to be the same for all populations and equal to 1
(omitted here). The connectivity parameter wji � 0 represents
the weight of connection from unit i to unit j . The absence
of the inhibitory connection wsd is justified by the anatomical
findings [5]. Note that the divisive inhibitory population is
considered divisive just because it delivers divisive inhibition
to the excitatory population. Its self-inhibition connection wdd

remains subtractive; no divisive modulation is evidenced, to
our knowledge, in neuronal population other than on the
pyramidal cells. All three populations are assumed to work

at the same time scale, so all time constants are omitted in this
model. A schematic of the model can be found in Fig. 1.

2. ESŚ model

An equivalent model but without the divisive inhibition
(ESŚ model) is given by the following system of ODEs:

dE

dt
= −E + (ke − E)Fe(weeE + Pe,wesS + weś Ś,0),

dS

dt
= −S + (ks − S)Fs(wseE + Ps,wssS,0), (4)

dŚ

dt
= −Ś + (kś − Ś)Fś(wśeE + Pś,wśsS + wśś Ś,0),

with the same input-output functions Fj , j = {e,s,ś}, as
described in Eq. (1). Note that the only thing that changes
compared to the ESD model is the quality of inhibition that
is provided by the secondary inhibitory population, Ś, to the
excitatory population, E. Instead of being divisive, denoted
by D, now it is subtractive, denoted by Ś. This second ESŚ

model is created in order to provide a comparison to the ESD

model.

3. Nonideal divisive inhibition

The divisive inhibition in the network can be modeled in a
way that is not purely divisive modulation of the input-output
function of the excitatory population but rather a combination
of divisive and subtractive modulation. This can be thought as
a more biologically realistic modulation, which more closely
resembles the experimental data [2,4]. An additional constant
parameter q ∈ [0,1] is introduced in the model in order to
express the fraction of divisive modulation that is delivered to
the excitatory population. The rest of the modulation, 1 − q,
is delivered as subtractive. For a schematic see Fig. 5(a). The
only change in the ESD model [Eq. (2)] is the input-output
function of the excitatory population:

Fe(x,θ,α) = 1

1 + exp
(− αe

1+qα
{x − [θe + θ + (1 − q)α]})

− 1

1 + exp
(

αeθe

1+qα

) , (5)

and, consequently,

ke = lim
x→+∞ Fe(x,θ,α) =

exp
(

αeθe

1+qα

)
1 + exp

(
αeθe

1+qα

) . (6)

The input-output functions Fs and Fd remain the same as
in Eq. (1). We shall use this nonideal divisive inhibition at a
later stage in the analysis to simulate mixture models between
the ESD and ESŚ models. Table I summarizes all the model
parameters we used in this study.

B. Feigenbaum number

The Feigenbaum number expresses the rate by which the
system undergoes the period-doubling bifurcations en route
to chaos. Therefore it can be used as a relative measure of
the abruptness of period-doubling cascades. Considering a
cascade of period-doubling bifurcations R2,R4,R8, . . . R2n , the
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TABLE I. Parameter sets used for the results shown. For all cases: Pe = 1.1, Ps = Pd = 0, θe = 4, θs = θd = 3.7, αe = 1.3, αs = αd = 2.
Note the varying parameters denoted with var.

Set no. wee wes wed or weś wse wss wde or wśe wds or wśs wdd or wśś Figures

1 var 12 28 14 2 20 21 0 2, 3(a), 3(b), 4, 5(d)
2 20.7 12 19 14 2 20 21 0 3(c)
3 19.6 12 19 14 2 20 21 0 3(d)
4 21 12 28 14 2 20 21 0 5(b)
5 21 11.5 24 var 1.5 20 21.5 6 6
6 21 11.5 var 15 1.5 20 var 8 7(a)
7 21 11.5 24 var 1.5 19.5 var 6 7(b)
8 21.5 12 var 16 2 20 18 0 10

Feigenbaum number is given by:

δ = lim
n→+∞

R2n−1 − R2n−2

R2n − R2n−1
. (7)

An approximation of this number, based on the first four
period-doubling bifurcations R2,R4,R8, and R16, was calcu-
lated by use of the following ratio:

δ̂ = R8 − R4

R16 − R8
. (8)

This measure can be compared with the Feigenbaum constant
δ = 4.6692 · · · [35], which was discovered to be a characteris-
tic constant for all one-dimensional maps and many dissipative
systems undergoing period-doubling cascades [51,52]. Values
of δ̂ near the Feigenbaum constant are considered as an
indication that the system complies with the Feigenbaum
universality, whereas values far from this constant indicate
a non-Feigenbaum behavior.

Essentially, the number δ̂ estimated from a period-doubling
cascade offers us a way to classify the route into chaos. If δ̂

is close to the Feigenbaum constant, then the transition into
chaos is well understood and can be reduced to the dynamics
of a one-dimensional map. If δ̂ is far from the Feigenbaum
constant, then the transition to chaos is underpinned by more
complex processes. Particularly, if δ̂ > δ, then the onset of
chaos is considered relatively more abrupt.

C. Bifurcation analysis using numerical continuation

The toolbox MATCONT [53] was used for the detection
of bifurcation points and the numerical continuation of
bifurcation curves presented in this work. A fourth-order
Runge-Kutta method (ode45) implemented in MATLAB Release
2013b (The MathWorks, Inc., Natick, MA) was used for the
numerical integration of the ODEs in all the reported results.
Other built-in ODE solvers were also used and produced
similar results.

III. RESULTS

In this work, the role of divisive inhibition in the transition
from order to chaos through a period-doubling cascade is ex-
amined. For this purpose, the model introduced in the previous
section was used. The connectivity between the two inhibitory
populations is unidirectional and follows the experimental
findings in neocortical networks [2,5]. A schematic of the
model with all the connectivity parameters can be found

in Fig. 1. A numerical approach was used for its analysis
throughout.

The introduced model can exhibit transitions from a limit
cycle (order) to a chaotic attractor through a cascade of period-
doubling bifurcations. Figure 2(a) shows the bifurcation
diagram of such a transition. The cascade parameter used
in this example is the self-excitation synaptic weight, wee.
The limit cycle emanates from a supercritical Andronov-Hopf
bifurcation and the amplitude of the oscillation increases
with the increase of the cascade parameter. The first four
period-doubling bifurcations are labeled as R2,R4,R8, and
R16, denoting the beginning of the period-2, period-4, period-8,
and period-16 cycles, respectively. Instances of the phase
space at different stages of the transition can be seen in
Fig. 2(b), including the chaotic attractor appearing at the end
of the cascade. The strange attractor is topologically similar
to the Rössler attractor [54], the Sprott D attractor [55], and
the Genesio-Tesi attractor [56] exhibiting a stretching and
folding mechanism [57]. The period-doubling cascade shown
in Fig. 2(a) has a Feigenbaum number close to the Feigenbaum
constant, δ̂ ≈ δ.

The behavior during the transition in this model, which
includes divisive inhibition, is compared with an equiva-
lent one which does not include divisive inhibition. All
the parameters of the model are the same; the only thing
that changes is the quality of inhibition delivered by the
secondary inhibitory population. The two versions of the
model are labeled as ESD and ESŚ and are expressed by
the sets of ODEs Eq. (2) and Eq. (4), respectively. The first
four period-doubling bifurcations R2,R4,R8, and R16 were
numerically calculated in both ESD and ESŚ models using
the MATCONT toolbox [53] (see Models and Methods).
The same toolbox was used to produce the period-doubling
bifurcation curves by varying both the cascade parameter and
another connectivity parameter. This way it is possible to
explore whether the transition from order to chaos is sensitive
to changes in network connectivity. The resulting bifurcation
diagrams are shown in Figs. 3(a) and 3(b).

As shown in the lower panels of Figs. 3(a) and 3(b), the
rate of bifurcation δ̂ was calculated for each value of the
varying parameter on the abscissa (see Models and Methods).
This measure was plotted alongside the Feigenbaum constant
δ = 4.6692 · · · [35] represented by the dashed line in the
same panels. This plot reveals whether the behavior of the
model follows Feigenbaum universality. In Fig. 3, an example
of the comparison between ESD and ESŚ is shown with
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FIG. 2. (Color online) Example of a period-doubling cascade in
the ESD model and the different oscillatory states of the system.
(a) The bifurcation diagram, where local minima of variable E are
plotted against the cascade parameter wee, shows the successive
period-doubling bifurcations R2,R4,R8, and R16 occurring at a rate δ̂

close to the Feigenbaum constant δ ≈ 4.67. (b) The phase space plots
show the different oscillatory states of the system from a period-1
cycle up to the chaotic attractor. The value ranges for these oscillatory
states are marked in (a) by corresponding Arabic numerals.

self-excitation wee being the cascade parameter and wed

(respectively weś for ESŚ) being the varying connectivity
parameter.

From the example in Fig. 3, it is obvious that the two
versions of the model, ESD and ESŚ, can exhibit a signifi-
cantly different behavior. While the δ̂ value is always near the
Feigenbaum constant in the ESD model, the δ̂ value for the
ESŚ model is sensitive to changes of the parameter weś and can
take a wide range of values. There is actually a linear increase
as the parameter weś is increased. The results indicate that
the ESD model complies with the Feigenbaum universality
and has always smooth transition from order to chaos,
whereas the ESŚ model exhibits a non-Feigenbaum behavior
with transitions which can be much more abrupt. Similar
observations can be made using other cascade parameters, like
wds or wse, and other varying connectivity parameters (see
also Appendix A).

This difference in behavior between ESŚ and ESD model
can be also seen in the first return maps of their chaotic attrac-
tors [see Fig. 3(c) and 3(d)]. By taking the local minima of the
chaotic activity of excitatory population E, we constructed the
first return maps Emin(n + 1) vs Emin(n) where Emin(n) the n-th
local minimum. In particular, the chaotic activity was produced
using the parameters marked with a red cross in Figs. 3(a)
and 3(b). As shown in Figs. 3(c) and 3(d), only the return
map of the ESD attractor is one-dimensional and unimodal,
indicating compliance to Feigenbaum universality [52]. This
type of return map is typical of attractors resulting from a
stretching and folding mechanism [57]. In contrast, the ESŚ

model produces a two-dimensional and bimodal return map,
indicating that the attractor is not folded completely upon the
first return; that is, its dynamics cannot be described by a
one-dimensional map as the universality requires.

The question that arises is how does the divisive inhibition
in the ESD model ensure Feigenbaum behavior preventing
any abrupt transitions? Can this observation be generalized
to all possible parameter sets that produce transitions to chaos
through period-doubling cascade? Studies on non-Feigenbaum
behavior suggest that phenomena of codimension-2 or higher
can disturb the period-doubling curves in their neighborhood,
resulting in arbitrarily abrupt transitions [39]. In Fig. 4,
the bifurcation diagrams include also the Andronov-Hopf
bifurcation curve and the saddle-node (also known as fold)
bifurcation curve along with the period-doubling bifurcation
curves. The ESŚ diagram reveals a codimension-2 bifurcation
called zero-Hopf bifurcation (or fold-Hopf) at the point where
the two bifurcation curves tangentially intersect [58]. As
the δ̂ value indicates, the period-doubling bifurcation curves
are disturbed near the zero-Hopf bifurcation resulting into a
non-Feigenbaum behavior. For higher values of wds , though,
away from the zero-Hopf bifurcation point, the δ̂ value returns
to values near the Feigenbaum constant. A branch of sub-
critical Neimark-Sacker bifurcation also appears in Fig. 4(a),
originating from the zero-Hopf point as expected [58]. This
results in the appearance of an unstable torus in phase space for
parameter values between the Andronov-Hopf and Neimark-
Sacker bifurcation curves (shaded area). Tori (stable and
unstable) and quasiperiodic activity are features easily found in
the ESŚ model and they are always linked with the zero-Hopf
and Neimark-Sacker bifurcations in this model. This and
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FIG. 3. (Color online) Comparison between the ESŚ and ESD model in terms of their Feigenbaum behavior and their first return maps.
[(a)–(b)] Bifurcation diagrams for the ESŚ and ESD models showing the first four period-doubling curves. The parameter wee was used as
the cascade parameter in both cases. The lower panels show the calculated δ̂ of the cascades for varying weś and wed , respectively. [(c)–(d)]
First return maps of typical chaotic attractors produced by the ESŚ and ESD model, respectively. The maps are produced by taking the local
minima of the variable E (red dots on the attractors in the inset plots). The parameter values used to produce the chaotic attractors are marked
with a red cross in the respective bifurcation diagram in (a) or (b) (see also Table I).

similar findings (see Appendix A) suggest that the appearance
of such bifurcations (zero-Hopf and Neimark-Sacker) can
be responsible for the non-Feigenbaum behavior and abrupt
transitions in our model. The implication of Neimark-Sacker
bifurcation in non-Feigenbaum behavior is also documented
in another study in which such phenomena are found in a two-
dimensional model map [41]. Apparently these bifurcations
can appear in the ESŚ system but what about the ESD? Does
the divisive inhibition prevent such bifurcations for all possible
parameter settings?

To address this question we introduce an additional pa-
rameter in the ESD model. The parameter q ∈ [0,1] creates
a continuum between the two extremes: ESŚ at q = 0 and
ESD at q = 1. With any other value within this range,
the secondary inhibitory population of the model exhibits
a combination of subtractive and divisive inhibition [for a
schematic see Fig. 5(a)]. Using this model, it is possible to
incorporate the results shown in Figs. 3 and 4 in a single
plot and examine what is the behavior of the model between
the two extremes. As shown in Fig. 5(d), the behavior of the
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FIG. 4. (Color online) Zero-Hopf (ZH) and Neimark-Sacker bifurcations are implicated in the non-Feigenbaum behavior of the ESŚ model.
The Andronov-Hopf bifurcation curves (orange) are plotted alongside the period-doubling bifurcation curves for both the ESŚ and ESD model.
A saddle-node bifurcation curve (cyan) was also found near the Andronov-Hopf curve only in the case of ESŚ. These two bifurcation curves
tangentially intersect and produce a zero-Hopf (ZH) bifurcation point. Near the ZH point, the value of δ̂ is increased indicating a non-Feigenbaum
behavior in the ESŚ model. In contrast, the ESD model does not exhibit any interaction between Andronov-Hopf and saddle-node curves
(at least in this example) and the model continues to obey Feigenabum universality. The shaded area indicates the existence of a torus. Other
plotting conventions are the same as in Figs. 3(a)–3(b).

system switches gradually from non-Feigenbaum (q < 0.2)
to Feigenbaum (q > 0.4). The saddle-node bifurcation curve
and also the zero-Hopf bifurcation point are found for low
values of q, near the ESŚ extreme. Starting from q = 0, the
saddle-node bifurcation curve is very close to the Andronov-
Hopf bifurcation curve. They tangentially meet each other
at the zero-Hopf point and then they diverge rapidly from
each other for values of q higher than 0.2. The saddle-node
bifurcation curve reaches a cusp point (CP) at around q =
0.51 and returns back to lower values of q, preventing any
subsequent interactions with the Andronov-Hopf bifurcation
curve for high values of q (q > 0.5). Note also that at around
q = 0.4 and wee = 18.3 the two bifurcation curves seem to
intersect again but actually they do not; two different fixed
points bifurcate separately in this case so no zero-Hopf is
produced there. Despite the fact that the cusp point does
not always appear in such bifurcation diagrams and therefore
the saddle-node bifurcation curve can sometimes reach high
values of q (depending on the parameter set used), the two
bifurcation curves always seem to diverge from each other for
high values of q (data not shown). If this is true for all possible
parameter sets, then the appearance of a zero-Hopf bifurcation
is impossible for high values of q (near the ESD extreme).
Also the presence of the cusp point (CP) indicates that the
phenomenon of hysteresis is also possible for low q values.

During this phenomenon the whole period-doubling cascade
can be skipped and the system can directly transition from a
resting state to chaos through a saddle-node bifurcation instead
(see Appendix B for an example). Note that the saddle-node
bifurcation is considered as the most common transition into
seizure dynamics [59].

Next we examined if it is possible to find any zero-Hopf
bifurcation points in the parameter space for high values of
q. For this purpose, a numerical optimization approach was
used to search for such points in the parameter space for
different values of q. In particular, the search starts from
random points in the parameter space and tries to converge
to a fixed point which undergoes simultaneously saddle-node
and Andronov-Hopf bifurcations by varying the connectivity
parameters. More precisely, the search tries to find fixed points
where one of the eigenvalues of the Jacobian matrix is zero,
λ1 = 0, and the other two are purely imaginary conjugates,
λ2,3 = ±iω [60] (see Appendix C for details). Running the
algorithm multiple times with these criteria, it is expected to
reveal multiple occurrences of zero-Hopf bifurcation in the
parameter space. The algorithm was tested and successfully
managed to find the particular zero-Hopf bifurcation points
that were first found by MATCONT and shown in Figs. 4
and 5, demonstrating its reliability. After multiple runs
(107 for each q value), the overall results of this search are
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FIG. 5. (Color online) Zero-Hopf (ZH) bifurcations can only be found when divisive inhibition is far from being purely divisive (low
values of q). (a) Schematic of the model incorporating the q parameter which enables the modeling of nonideal divisive inhibition and creates
a spectrum between ESŚ and ESD. (b) Counting the zero-Hopf bifurcations found for different values of q using a random search in the
parameter space. (c) Intuitive schematic of how the presence or the absence of the divisive inhibition shapes the boundary between order and
chaos. (d) Bifurcation diagram showing an example of the spectrum between ESŚ (for q = 0) and ESD (for q = 1). Note the presence of the
saddle-node curve (cyan) near the Andronov-Hopf curve (orange) only for low values of q.

shown in Fig. 5(b). The two curves show all the occurrences
of zero-Hopf bifurcation which were found for different values
of q. Each curve corresponds to a different subset of varying
parameters (see Appendix C for details). Apparently all the
zero-Hopf points found in the system are limited in the region
near the ESŚ extreme, with q < 0.5. This plot clearly shows
that it is impossible for the random search algorithm to find any
fixed points undergoing a zero-Hopf bifurcation for values of
q � 0.5. This result coupled with some further analysis on the
distribution of the zero-Hopf points (see Appendix D) indicates
that pure or almost pure divisive inhibition can prevent
phenomena like zero-Hopf and Neimark-Sacker bifurcations.
Therefore it prevents non-Feigenbaum behavior and abrupt
transitions into chaos.

IV. DISCUSSION

The comparison between a model of neocortical networks
with divisive inhibition (ESD, q = 1) and an equivalent
one without divisive inhibition (ESŚ, q = 0) suggests that

gain control plays a special role in the dynamics of such
networks. The present numerical study of the transition from
order to chaos in this type of networks shows that pure or
almost pure divisive inhibition ensures that the transition
always complies with Feigenbaum universality. Complying
with Feigenbaum universality means that there is always a
well-defined boundary (in relative terms) that separates the
regions of order and chaos in the parameter space regardless
of the specific values of connectivity weights. In contrast,
when the divisive inhibition is replaced by subtractive, the
transition can be abrupt or smooth depending on the exact
parameter settings of the network. Without divisive inhibition,
the period-doubling transition to chaos can be considered
unpredictable. An intuitive representation of the difference
between the two cases is depicted in the schematic of Fig. 5(c).
As outlined in the Introduction, similar findings about di-
visive inhibition (preventing instabilities and the sensitivity
to parameter changes) were found in a recurrent network of
interconnected neurons with firing rate dynamics [12]. This
indicates that this effect of divisive inhibition is not limited
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only to the abstract Wilson-Cowan type of models. Conse-
quently, the role of divisive inhibition is worth investigating
also in spiking neural networks that feature gain modulation
(e.g., Ref. [61]).

The non-Feigenbaum behavior, which is only found when
the inhibition is far from being divisive (low q values),
is linked with the appearance of zero-Hopf and Neimark-
Sacker bifurcations. In general, when the model lacks divisive
inhibition, it seems to have a more diverse dynamic repertoire
with the possibility of exhibiting phenomena of codimension-2
or higher. This increased effective dimension of the dynamics
might be the underlying explanation for the non-Feigenbaum
behavior found in the model, as suggested in Ref. [39]. The
gain control mechanism prevents these phenomena and there-
fore prevents non-Feigenbaum critical behavior. Additionally,
the simple generic structure of this system suggests that gain
control might have a similar effect in structurally equivalent
systems.

The model is capable of incorporating mixed effects from
divisive and subtractive inhibition (using the parameter q).
This is because different factors have been suggested to enable
and modulate (possibly in combination) divisive inhibition.
Such factors include synaptic noise [62,63] and target positions
on the principal cells of the inhibitory input [4]. As both the
synaptic noise variance and the target position can vary in
a continuous fashion, it is reasonable to include the degree
of divisive inhibition as a continuous parameter. We shall
elaborate on the implications of linking synaptic noise to our
parameter q.

Experimental studies investigated how synaptic noise influ-
ences the gain control mechanism of shunting inhibition which
is provided primarily by soma-targeting interneurons [2]. By
simulating the background synaptic noise with a dynamic
clamping technique, it was shown that highly variable synaptic
input is required for the modulation of neuronal gain [62]. A
similar in vitro approach was taken in Ref. [63], where they
controlled the magnitude and the variance of the excitatory
and inhibitory conductances independently. In agreement with
the previous study, the input-output relationship of pyramidal
neurons was divisively modulated proportionally with the
variance of the injected conductances. A computational study
of this mechanism also demonstrated the importance of highly
variable synaptic noise in gain modulation with a biophysically
detailed neuron model [64] (for a review, see Ref. [3]). In our
model, high values of the q parameter can indicate that the
network is functioning under high synaptic noise conditions,
that is, high variance of the synaptic currents. By linking the
parameter q with high synaptic noise, our model provides
hypotheses which can be tested either experimentally with
electrophysiological setups or computationally with detailed
networks of spiking neuron models. For instance, we predict
that when the synaptic noise is increased, the possible dynamic
phenomena in the network are more limited (no codimension-2
bifurcations), structures such as tori are less likely to arise,
the transition to chaos through period-doubling bifurcations
follows a Feigenbaum behavior, and the chaotic attractor
can be described by a one-dimensional first return map. In
experimental setups, the prediction about tori might prove most
interesting, as they would correspond to quasiperiodic oscil-

lations or amplitude modulated oscillations (also observed in
experiments [65]).

Our findings might also have implications in the under-
standing of pathological dynamics in the brain and the role that
gain control may play on their onset. The dynamics in patholo-
gies like epilepsy and Parkinson’s disease are characterized
by hypersynchronous activity in local networks [16,66] and,
consequently, reduced entropy [67]. This activity can be either
regular or irregular but the common feature is the excessive
synchronous activity that is detected in electroencephalogram
(EEG) or local field potential (LFP) recordings. Such ab-
normally synchronous oscillations are also characterized as
paroxysmal events, that is, featuring rapid fluctuations between
extremely high and low values in the mean-field potential.
The transition into chaos in our model can be considered as
such a transition to a pathological state exactly because of
the paroxysmal oscillations that emerge (e.g., see Fig. 8 in
Appendix B). Figure 2(a) shows how the local minima get
more and more extreme as we progress through the cascade
and into the chaotic regime. A similar plot can be produced
for the local maxima of the system (not shown) indicating that
the range of activity increases while the oscillation becomes
more complex. These observations are typical among period-
doubling cascades and the resulting chaotic attractors as
dictated by the α constant of the Feigenbaum universality [35].
Through these cascades, the activity is pushed to its limits
and, consequently, becomes increasingly paroxysmal. Many
computational studies modeled pathological dynamics and
in particular seizurelike activity with chaotic attractors that
produce complex paroxysmal oscillations resembling the
spike-wave or polyspike-wave complexes usually seen in
epilepsy patients’ EEG [24,25,31,42]. In addition, some of
these models feature period-doubling cascades at the onset or
offset of the paroxysmal activity [24,31,42]. Period-doubling
cascades were also detected in the analysis of EEG taken from
patients of temporal lobe epilepsy [34]. Hence we suggest that
the low-dimensional chaotic attractor as introduced here could
be identified as a paroxysmal state, with gain control serving
as a way to prevent relatively rapid transitions into such a
state.

In more general terms, chaotic dynamics in local networks
imply a failure of stable periodic activity that is necessary
for long-range synchronization at specific frequencies. Hence,
any brain function that relies on stable periodic activity of
local neocortical networks would be impaired by the onset
of chaos. It is well established that long-range synchro-
nization at α and θ frequencies are crucial for memory
and other cognitive functions [68]. Furthermore, failure in
long-range synchronization at β and γ frequencies is asso-
ciated with pathologies like schizophrenia [16]. The results
presented here suggest that divisive inhibition is responsible
for maintaining stable periodic behavior and thus enabling
synchronization. Indeed, preliminary simulation results in a
paradigm of long-range synchronization between two local
networks suggest that the inclusion of divisive inhibition pre-
vents chaotic activity and enhances synchronization. Hence,
by preventing abrupt transition into chaos, divisive inhibi-
tion could act to prevent the onset of pathological neural
dynamics.
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APPENDIX A: ABRUPT PERIOD-DOUBLING CASCADE
AND NON-FEIGENBAUM BEHAVIOR IN THE ESŚ MODEL

Figure 6 shows an example of an abrupt period-doubling
cascade leading to chaos taken from the ESŚ model. The
specific parameters used are given in Table I, Parameter Set
5. Comparing it to the typical, fractal in nature, Feigenbaum
cascade in ESD (see Fig. 2), this cascade can be considered
as a much more abrupt transition into chaos with δ̂ ≈ 12.35
which is much higher than the Feigenbaum constant [35].

Figures 7(a) and 7(b) are showing two more examples
of non-Feigenbaum behavior produced by the ESŚ model.
The specific parameters used in both cases are given in
Table I. The period-doubling bifurcation curves, in both of
these examples, are found to be distorted or twisted resulting
into values of δ̂ that can vary widely. The presence of
the saddle-node bifurcation curves near these cascades is
hypothesized to be interfering locally with limit cycles in
phase space. This prevents the neighboring limit cycles to
bifurcate in a typical Feigenbaum way. Saddle-node and
Andronov-Hopf bifurcation curves are also interacting produc-
ing the phenomena of zero-Hopf (ZH) and Neimark-Sacker
(torus) bifurcations. Such phenomena were implicated in
non-Feigenbaum behavior in previous works [39,41].
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FIG. 6. Example of an abrupt period-doubling cascade in the ESŚ

model. The fourth period-doubling bifurcation comes relatively much
more abruptly compared to the previous one (δ̂ ≈ 12.35).
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FIG. 7. (Color online) Zero-Hopf bifurcation found near the non-
Feigenbaum critical behavior in the ESŚ model. The parameter sets
for these examples can be found in Table I. The legend applies for
both (a) and (b). Other plotting conventions are the same as in Fig. 4.

APPENDIX B: TRANSITION TO CHAOS THROUGH A
SADDLE-NODE BIFURCATION (HYSTERESIS

PHENOMENON)

As shown in Fig. 5(d), the system can enter the chaotic
region through a saddle-node bifurcation at low values of
q. This is possible as a result of a hysteresis phenomenon.
Consider the following scenario. We keep q constant at 0.2. By
increasing the parameter wee from 17 to 19, the activity starts
from a resting state (i.e., converges to a stable fixed point)
and remains in the resting state despite the appearance of a
limit cycle at the Andronov-Hopf curve (at wee ≈ 18.7). The
system is bistable at this point. Then, by increasing wee even
more, the limit cycle undergoes the period-doubling cascade
while the activity remains at rest. At wee ≈ 21 the stable fixed
point collapses on the saddle point and vanishes (saddle-node
bifurcation), leaving the system monostable again with the
chaotic attractor as the only attractor in phase space. At this
point the system transitions from a resting state to a chaotic
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FIG. 8. Example of the activity entering chaos directly from the
resting state. At time point 50, a saddle-node bifurcation occurs and
the node on which the activity was resting vanishes. After that point
the trajectory converges to the chaotic attractor.

state directly. A trace of such a transition can be seen in Fig. 8.
Until time point 50, the activity is at rest. The saddle-node
bifurcation occurs at time point 50 and the activity is chaotic
after that. At that time point, the value of the parameter wee

reaches 21. See also Table I for the rest of the parameters
[same as Fig. 5(d)]. Note that this type of bifurcation, the
bistable nature of the behavior, and the direct current shift that
is present resemble the experimental signature of seizurelike
event onset [59].

APPENDIX C: RANDOM SEARCH IN PARAMETER SPACE
FOR ZERO-HOPF BIFURCATIONS

A nonlinear optimization method was used to find zero-
Hopf bifurcations starting from random points in the parameter
space. In particular, fminsearch function was used in MATLAB

Release 2013b for the reported results. The search tries to
find fixed points where one of the eigenvalues of the Jacobian
matrix is zero, λ1 = 0, and the other two are purely imaginary
conjugates, λ2,3 = ±iω [60]. The algorithm starts from a
random point p0 in the parameter space and tries to solve
the optimization problem minp z(p) where the function z(p)
is given by:

z(p)=
∑

i

g2
i +

∏
i

|λi |2+
∑

i

Re(λi)
2+

[∑
i

Im(λi)

]2

+ l.

(C1)

The set p is a set of parameters including the three variables
E,S, and D and four connectivity weights w. The functions
gi , i = {1,2,3}, are the right-hand side of the ODEs in Eq. (2)
in combination with the input-output function in Eq. (5).
Minimizing these functions to 0 is equivalent as solving the
system of the three nullclines and therefore finding a fixed
point in the phase space. The eigenvalues λi , i = {1,2,3},
are the eigenvalues of the Jacobian matrix of the system.
Minimizing the product

∏
i |λi |2 ensures that at least one of

the eigenvalues is 0 which is the criterion for the saddle-node
bifurcation. Given that one of the eigenvalues is 0, minimizing
the sum

∑
i Re(λi)2 + [

∑
i Im(λi)]2 ensures that the other two

eigenvalues are complex conjugates with zero real parts. This is
the criterion for the Andronov-Hopf bifurcation. The penalty
term l is a positive number only when the search algorithm
diverges outside the valid parameter space in which the search

is limited. This number is proportional to the divergence from
the valid parameter space. In all other cases l = 0.

The valid parameter space is enclosed in the range
[0 0.5] for each of the three variables E,S, and D and the
range [0 50] for each of the varying connectivity parameter
w. The results shown in Fig. 5(b) are produced for two
different cases, for either p = {E,S,D,wee,wed,wse,wds} or
p = {E,S,D,wes,wss,wde,wdd}. Note that both combinations
of the connectivity parameters involve all three nullclines of the
system. Given that the parameter space is a seven-dimensional
space, for each q value the algorithm was run 107 times in
order to achieve a reasonably comprehensive search.
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FIG. 9. Box plots showing the distribution of ZH points found
in the parameter space for the four varying parameters (a)
{wes,wss,wde,wdd} and (b) {wee,wed,wse,wds}. The horizontal line
indicates the median value, the box edges indicate the 25th and 75th
percentiles and the whiskers extend to include the whole range of
values. (a) As q increases, the ZH points are found in an increasingly
limited range of values below 50. (b) In contrast, the values for the
parameter wed are increasing as q increases and they reach the upper
limit of 50.
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APPENDIX D: DISTRIBUTION OF THE ZERO-HOPF
PHENOMENA IN THE PARAMETER SPACE

This section reports some supporting results about the
random search which was performed to find zero-Hopf
bifurcation points for different values of the parameter q.
As shown in Fig. 5(b), the points were only found for low
values of q. Varying the parameters wes,wss,wde, and wdd (red
dashed line) all the zero-Hopf points were limited at q � 0.45.
Figure 9(a) shows the distribution of these points across the
four connectivity parameters. It is evident that all aero-Hopf
points are found in a limited range of values below 50 for each
parameter. The search was actually limited to values below
50, but even if this limit was higher, it would not return more
points. This is true assuming that all zero-Hopf points are lying
on a single continuous hypersurface in the parameter space.

Figure 9(b) shows the distribution of the same points across
the varying parameters wee,wed,wse, and wds [black solid
line in Fig. 5(b)]. In this case it is apparent that as the q

value increases, the zero-Hopf points are found at increasingly
higher values of wed . At q = 0.25, the ZH points are actually
found near the arbitrarily chosen upper limit of 50 for wed .
This suggests that our results might be biased. The other three
parameters (wee,wse, and wds) are clearly limited to values
lower than 50 so they do not raise any concerns. In order
to check whether more ZH points can be found for higher
values of q by varying these parameters, the valid ranges
for parameter values were expanded to [0 200] for wed and
[0 100] for the other three parameters. The random search
was run again and indeed a few more ZH points were found
for q = 0.3 and q = 0.35. For these additional ZH points,
wed has very high values (in the range [150 200]), whereas
the other three parameters remain very limited to values
below 50 (data not shown). Apparently, the hypersurface that
accommodates the ZH points collapses on just one parameter,
namely wed . This result suggests that it might be possible
to produce zero-Hopf phenomena even for high values of q

just by keep increasing disproportionally wed while the other
parameters remain stable at low values. It is also evident from
the previously reported results [e.g., see Figs. 3 and 7(a)] that
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FIG. 10. Increasing wed and keeping everything else constant
quickly flattens out the chaotic attractor. Ampl(X) denotes the
max-min amplitude in dimension X. Note that q = 1 in this case.
See also Table I for the rest of the parameter values.

the chaotic region can actually be extended for high values
of wed . But as Fig. 10 shows, the chaotic attractor quickly
flattens out as wed increases. The max-min amplitude along
the dimension D decreases much faster than the max-min
amplitude along the other two dimensions making the attractor
almost a two-dimensional object in phase space. This flattening
of the attractor defeats its modeling purpose. Assuming that all
the parameters have the same order to magnitude, ZH points
cannot be found for high values of q.

So based on these results and assuming that all zero-Hopf
points are lying on a single continuous hypersurface and also
assuming that all connectivity parameter values have the same
order of magnitude, no zero-Hopf bifurcations can be found
in a model with strong divisive inhibition (high q value) and
therefore any abrupt period-doubling transition to chaos is
prevented.
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