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The study of dynamical systems defined on complex networks provides a
natural framework with which to investigate myriad features of neural
dynamics and has been widely undertaken. Typically, however, networks
employed in theoretical studies bear little relation to the spatial embedding
or connectivity of the neural networks that they attempt to replicate. Here,
we employ detailed neuroimaging data to define a network whose spatial
embedding represents accurately the folded structure of the cortical surface
of a rat brain and investigate the propagation of activity over this network
under simple spreading and connectivity rules. By comparison with standard
network models with the same coarse statistics, we show that the cortical geo-
metry influences profoundly the speed of propagation of activation through
the network. Our conclusions are of high relevance to the theoretical modelling
of epileptic seizure events and indicate that such studies which omit physio-
logical network structure risk simplifying the dynamics in a potentially
significant way.

1. Introduction

The newly emerging discipline of network science provides a general frame-
work for representing, modelling and predicting the behaviour of complex
systems belonging to areas as diverse as social science, biology and information
technology [1]. Motivated by the observation that most real-world networks fail
to conform to the homogeneous Poissonian degree distribution admitted by
Erdds & Rényi [2] random graphs, improved network models were constructed
(most notably the small-world model of Watts & Strogatz [3] and the preferential
attachment model of Barabasi & Albert [4]) that were capable of recovering many
of the interesting features displayed by real-world network data. Initial investi-
gations into complex networks focused primarily on the characterization of
networks in terms of a small number of topological parameters; however,
more recently, interest has shifted towards understanding the influence of
network structure on the dynamic processes occurring upon them—see [5,6]
and references therein.

Such investigations are particularly relevant to biological systems, in which a
well-defined network structure is frequently a key feature, the evolution and top-
ology of which are presumed to affect relevant biological processes. A paradigm
for such studies is that of neural systems, which have been widely studied in this
context with the aim of providing a more complete understanding of epilepsy
and other neural conditions [7]. Epilepsy is characterized by recurrent and unpre-
dictable instances of ‘excessive or synchronous neuronal activity” (seizures) [8];
the synchronization of neuronal activity in networks has therefore received sig-
nificant attention, and network topology is considered to be a dominant factor
affecting spreading dynamics [9-14], independent of the specific model by
which activation is transmitted across the network. A wide range of transmission
models has been employed in the literature. Representative examples include
simple cellular automata-type spreading rules [11,15] and pulse-coupled oscil-
lators (see [9] and references therein), of which integrate-and-fire models
[13,16,17] are a special case. We note that in previous work, e.g. [9-11] (and in
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the present work), network nodes are to be interpreted as
‘neural units’ comprising many neurons, and representing a
single cortical column, say. Detailed consideration of synaptic
signalling models is therefore not appropriate.

A further essential aspect of neural systems is that they are
spatially embedded—i.e. their nodes and edges are constrained
to lie on a fixed geometric structure, and it is expected that these
additional factors will further influence network dynamics.
Indeed, though spatial networks have received considerable
attention of late [18], the influence of spatial embedding upon
network dynamics is not well understood.

A small number of recent studies have begun to employ
neuroimaging data (e.g. via diffusion tensor imaging) to
infer large-scale network connectivity [19,20]; however, the
majority of studies in macroscale epilepsy and seizure mod-
elling typically employs uniform lattices in one dimension or
two dimensions with network connectivity restricted to
nearest neighbours, or with additional long-range connec-
tions obeying arbitrary rules [17,21,22]. Such an approach
fails to exploit a wealth of neuroimaging data [23], which
reveals the intricate connectivity structure and surface geo-
metry of the brain. Therefore, current approaches still
simplified surfaces [24-26]
inspired by the original studies of excitable media [27]—an
organization that is different from the rounded shape of
model organisms such as rodents or convoluted brain sur-
faces, such as for humans. Note that this limitation not
only relates to epilepsy modelling but also to studies of
spreading depression [28,29].

In this work, we seek to address the deficiency in
neural network studies discussed earlier. We employ detailed
spatial information obtained from freely available neuroima-
ging data of a rat brain to define a physiologically relevant

observe two-dimensional

neural network, and via comparison with commonly
employed network architectures, determine the influence of
the connectivity and complex surface geometry of the brain
on seizure dynamics. We restrict attention to lattice-like
network structures (i.e. networks that display significant clus-
tering and long average path lengths), and a basic spreading
model in favour of the more complex signalling models out-
lined above, as the aim here is to highlight the contribution of
spatial network properties to signal transmission. We also
limit our current study to spreading on the brain surface;
the role of long-distance white matter fibre tracts between
brain regions is not part of this work.

Our investigations highlight clearly that employing corti-
cal surface geometry to inform network structure influences
dramatically the propagation of activation through the net-
work. By doing so, we indicate that activation dynamics of
relevance to epileptic seizure initiation and progression (in
particular, those highlighting the importance of the site of
initiation within the network) display distinct differences in
idealized networks, which are commonly employed in the lit-
erature. Most strikingly, we show that our cortical network
delays significantly the total activation of the network when
compared with idealized networks with the same coarse stat-
istics: in the parameter regimes that we study, the time to
activation is increased by a delay factor lying in the range
1.45-1.88. In this way, we highlight clearly the importance
of realistic network structure on activation dynamics and
indicate that such considerations should be included in theor-
etical models which aim to provide a more complete
description, for example, of epileptic seizure activity.

The remainder of this paper is organized as follows. In §2, [ 2 |

we use neuroimaging data to construct a lattice-like network
architecture embedded on the cortical surface of a rat brain,
together with a simple cellular automaton-like rule governing
network activity. In §3, we present a comparative analysis of
spreading dynamics over the cortical network, a uniform
square lattice and an ensemble of two-dimensional geometric
random graphs. A summary of our main results, together
with a discussion of future avenues of investigation, is
provided in §4.

2. Spatial complex networks

In this paper, we investigate the influence of network struc-
ture on the dynamics of the processes occurring on the
networks, with specific application to neural signalling. We
achieve this by comparing the spreading dynamics of simu-
lated neural activation within a rat cortex with those
obtained on commonly employed spatial networks. All of
the networks examined herein are unweighted, undirected
and without loops.

A plethora of tools and techniques for characterizing com-
plex networks exists [30]; however, in the context of spatial
networks not all of these measures remain relevant. An
important feature of neural networks is the propensity for
nearby nodes to connect, and thus, such graphs tend to exhi-
bit high levels of local clustering. In addition, vertex
reachability (defined as the ability to travel between nodes i
and j following connections within the network) impacts
significantly on spreading dynamics. In view of this, syste-
matic comparison of the network models considered here
will be effected via the clustering coefficient, which is given
mathematically as

1 N
C= ﬁ; C, (2.1)

where C; denotes the probability that any two neighbours of
node i are connected and N the number of nodes. Addition-
ally, we employ the characteristic path length, L, which is
defined as the number of edges in the shortest path between
two vertices, averaged over all pairs of vertices.

2.1. Rat cortical network

Spatial coordinates defining the cortical surface of the rat
were obtained from the CAREeT software package [31] and pro-
cessed using the CARET MAaTLAB toolbox. Figure 1a shows the
cortical surface of the left hemisphere of the rat brain, with
typical neural activity spreading obtained via numerical
simulation (see §3) superimposed.

Restricting to the left hemisphere, we construct a cortical
rat network, with nodes positioned on the Ny, = 9623 avail-
able data points (figure 1a), by connecting nearest neighbours
according to the following process: (i) a minimally connected
nearest-neighbour network is defined via the triangulation
provided by the Carer software package; (ii) vertex pairs
are connected if they lie within a Euclidean distance r of
each other; and (iii) connections are removed if the shortest
path, calculated using the nearest-neighbour network defined
in (i), between connected nodes exceeds a predefined number
of steps, which is defined experimentally. While Euclidean
distance is a reasonable estimate of physiological connection
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Figure 1. A typical simulation of spreading dynamics in spatially constrained networks. Dark grey dots denote activated nodes. (a) A spatial network embedded on the left

hemisphere of the rat cortex (note that here and in figure 5, the axes are not scaled equally for better visualization); (b) a two-dimensional square lattice graph; and (c) a
two-dimensional periodic random geometric graph. (Online version in colour.)
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Figure 2. Network measures. The clustering coefficient C and average path length L of each network plotted as a function of the connectivity distance, r. The
dot-dashed line in (a) indicates the asymptote provided by equation (2.2). Data for the random graph are calculated from 10 000 realizations; in the parameter range
r € [0.35, 0.5], the maximum standard deviation of C and L is o= 0.0016 and 0.0301, respectively. (Online version in colour.)

length in general [23], the third step is necessary to remove
spurious edges which arise for large r that are near in the
ambient space, yet distant as measured on the cortical sur-
face: shortest path length, defined via a simple mesh
triangulation provides a convenient method with which to
measure this disparity.

2.2. Standard network models
To discern the importance of network structure on activation
spreading dynamics, we compare the spreading dynamics
observed on the cortical network defined in §2.1 with that
observed on a uniform square lattice graph and on an ensemble
of two-dimensional geometric random graphs [32], network
structures typical of those employed in the literature [17,21,22].

To construct a random geometric graph, we place uni-
formly and independently N nodes at random on the unit
square, and form connections between pairs of nodes accord-
ing to Euclidean distance. Similarly, a square lattice graph
is obtained by forming distance-dependent connections
within an N-point uniform square lattice on the unit
square. Figure 1b,c illustrates these networks and a typical
simulation of neural activity.

For comparability with the cortical network outlined in
§2.1, we choose N = 9604 (the closest square number to Ni,)

and control the number of edges in the graph via 7, the Eucli-
dean distance scaled on the surface area of the rat cortex. The
surface area is calculated via the CARET MATLAB toolbox to be
S 2221 (arbitrary units), which provides a scaling: 7 = r/+/S.
Additionally, we impose periodic boundary conditions.

Figure 2 shows how the network measures C and L, with
which we quantify differences between the three networks,
vary with the connectivity distance, r. Ensemble measures for
the random graph are calculated from 10000 realizations.
These results indicate that the networks exhibit distinctly
different features when restricted to short-range connections
(small r), while highly connected networks are comparable. It
is noteworthy that the value of the mean clustering coefficient
for the random graphs tends to the theoretical value

1 3\ %2
1- WEPNG (Z) ~ 0.58650 (2.2)

obtained in [33], where I(x) denotes the gamma function.
We remark that for r < 0.2 we find 7 < 1/ VN, and there-
fore no connections exist in the square lattice graph (figure 2a).
At r=0.2, the connectivity of the lattice graph corresponds to
a four-point nearest-neighbour stencil (so that the connectivity
matrix is analogous to a discrete Laplacian operator), and since
nearest neighbours of a vertex are not neighbours of each
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Figure 3. The evolution of the mean fraction of activated nodes, p, in the rat (dotted line) network, random (dashed line) graphs and lattice (solid line) for different
connectivity distances: (a) r = 0.35 and (b) r = 0.5. (Online version in colour.)

other, it follows that C = 0. In addition, note that due to interplay
between the regular discrete structure of the lattice and our rule
based upon Euclidean distance with which to add new edges,
variation of the clustering coefficient for the lattice graph is
non-monotonic with respect to 7. The mean degree of the other
networks is d = 5 (data not shown). Finally, we note that for
7 < 0.35, the random graphs are not fully connected, hence the
absence of data in figure 2b.

3. Spreading dynamics

Propagation of activation within each neural network defined
in §§2.1 and 2.2 was governed by a basic spreading model
[11,15], summarized as follows.

Nodes i are restricted to exist in one of two states, x;: active
(x;=1) or inactive (x; = 0). Starting from an initial activation
state, simulation operated in discrete timesteps; from one time-
step to the next, an inactive node became activated (or an active
node remained in the active state) if it was connected to at least
m active nodes. Initial conditions comprised a small region of
activation (1% of the total nodes in the network) surrounding
a node selected at random; the propagation of this activation
through the network under our simple assumptions on spread-
ing dynamics provides a convenient and compelling method
with which to highlight the differences imparted by the net-
works under consideration. We choose the mean fraction of
activated nodes as our key metric with which to investigate
the different networks. Ensemble measures of network
dynamics on the random graphs and rat network were con-
structed from 10000 simulations; behaviour in the uniform
lattice is identical for all initial activation positions.

The value of m places a lower bound on the connectivity of
the network for which network activation can occur, and influ-
ences the speed of spreading of activation in the network (and,
together with the value of r, the shape of the advancing acti-
vation front). As we consider highly simplified dynamics in
this study, omitting, for example, random inactivation or com-
plex intra-node dynamics (the better to emphasize the
importance of network structure on activation dynamics), the
balance between m and r determines completely the speed
of activation of the network (indeed, for appropriate m and
r, whole network excitation is inevitable) and, furthermore,

affects all networks in the same manner. In all of the simu-
lations that follow,
generality. For » < 0.35, the network structures are not com-
parable (as highlighted by figure 2b); for r> 0.5, the
networks are highly connected and activation spreads rapidly
over the cortical surface. Our interest here is in the short-range
connections between cortical columns, rather than long-range
white matter fibre tracts. We therefore restrict attention to con-
nection distances r € [0.35, 0.5], leading to mean degrees in the
cortical network {d,; ) € [17.59, 37.36]. While actual estimates
for mean degree in the rat cortex are not available, such con-
nectivity is typical of that employed in the literature (see
[9-11] and references therein), particularly when one accounts
for the large spread of observed degrees (e.g. for r = 0.35, the
degree ranges from 8 to 48 while for r = 0.5, it lies between 20
and 87), and so serves to illustrate our methodology. For brev-
ity, in the figures that follow, we illustrate the differences in
spreading dynamics obtained in each network for the choices
r=035and r=0.5.

Figure 1 shows a typical pattern of activation at an illustra-
tive timepoint in each of the three networks, which serves to
highlight clearly how differences in the underlying network
connectivity are made manifest in the spreading of activation
through the network. We remark that patterns of excitation
are ‘well defined” and uniform in the rat and lattice graphs,
with all nodes within a region activated, while in the random
graphs, lack of connectivity can lead to bottlenecks (here, we
choose r = 0.25 to highlight these structural differences).

Figure 3 shows the spread of activation through each net-
work, as measured by the fraction of activated nodes
(averaged over all instances). Figure 3a indicates that for
lower network connectivity (r=0.35; the mean degree in
each network was comparable: (d,) = 17.59, (d;ana) = 16.09
and dj, = 20), the activation speed in each of the three net-
differs significantly: the lattice graph requires
dramatically fewer timesteps to achieve entire network acti-
vation; the cortical network is the slowest of the three. In

we chose m=2 without loss of

works

fact, we observe a 1.88-fold and 1.45-fold increase in activation
time in the rat network when compared with the lattice and
random graphs, respectively. For more highly connected net-
works (r =0.5), the cortical network remains the slowest to
activate; however, the lattice and random graphs now display
similar activation rates, with the uniform lattice being
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Figure 4. Simulation results indicating the variability in activation dynamics in each network. (a,d) The cortical network; (b,e) the lattice; and (¢, f) the random
graphs. (a—¢) Histograms showing the time to full activation ¢*. In (c), a comparison with a Gaussian distribution (u = 43.03, o- = 0.6901) is also shown. (d — f)
The evolution of the mean fraction of activated nodes in each network (white circles), together with a CI of width 20~ The connectivity distance is chosen as r =

0.35. (Online version in colour.)

marginally faster. The delay imparted by the cortical network
is now 1.65-fold (lattice) and 1.46-fold (random graphs).
Figures 4 and 5 highlight the influence of initial activation
position on the spreading dynamics, which is quantified by
the time to full-network activation, t*. For the values of con-
nectivity distance, r, analysed here, full-network spreading
was observed for all networks independent of topology.
Therefore, all simulations contributed to the calculation of t*.
In figure 4a—c, histograms are presented, depicting the
spread of t* observed in the simulations for each network;
figure 4d—f shows the corresponding activation spread for
each simulation, together with the ensemble mean. The
delta function obtained in figure 4b and the corresponding
results shown in figure 4e reflect the fact that the network
dynamics are identical for all realizations owing to the uni-
form structure throughout the lattice and the periodic
boundary conditions. By contrast, figure 4a,d indicates a
very wide spread of activation times, and with no clear distri-
bution, in the cortical network. In the random graphs, t*
displays small variation on each realization; a wider spread
is exhibited for a less well-connected network (data not
shown). As highlighted by figure 4c, this distribution is

well characterized by a Gaussian with mean p = 43.03 and
variance o= 0.6901 (p < 0.01). The observed distributions
of spreading dynamics for the cortical and the random net-
works (figure 4a and 4c, respectively) were found to differ
significantly (p <107> over the investigated parameter
range) according to the Kolmogorov—-Smirnov statistic.

In figure 5, heat maps are presented to highlight those
initial activation sites in the cortical network which provide
significantly higher full-network activation speeds. These
results indicate that the differences in activation time shown
in figure 4 are due to the geometric structure of the rat
brain and the presence of curved and smooth regions in the
rat cortical surface.

The results shown in figure 5 are for the highly connected
network (r = 0.5); however, qualitatively similar results are
obtained for the range of parameter values analysed here:
although values of +* vary, in all cases, initial activation of
the folded regions leads to (approx.) a 1.7-fold reduction in
total activation time (data not shown).

We have presented simulation results which highlight the
differing rates of network activation, from an initial state com-
prising a small region of activated nodes. Our model can
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Figure 5. Heat maps indicating the dependence of activation dynamics on the initial activation site. The colours of each region indicate the time to full network
activation, t*, associated with initial activation in that region. (a,b) Rotated views; in each case r = 0.5. (Online version in colour.)

therefore be thought of as broadly applicable to the initial
stages of epileptic partial seizures, whereby spreading can
initiate from a certain region, leading to increased activity pat-
terns in larger parts of the brain (mechanisms that lead to the
rise of initial activity, such as high-frequency oscillations
through gap junctions [34] or to seizure termination are not
considered). Additionally, the results that we have presented
indicating the dependence of activation progression on
initiation site are pertinent to observations in epilepsy, as not
all brain regions have the same probability of being starting
points for seizures. We remark, however, that the concept of
a specific focal point of seizure origin from which seizure
activity spreads (owing to local abnormal connectivity) has
been criticized [35], and alternative hypotheses presented
[36,37]. We do not discuss this further as our focus here is
on the global network structure imparted by the rat cortex
embedding and its effect on activation propagation.

We remark that although our model has relevance to epi-
leptic seizure spreading processes as described earlier, its
form is intentionally simplistic: we have omitted a plethora
of physiologically important network and signalling features
(such as long-range connectivity or complex node activation
dynamics) as our study addresses a fundamental aspect of
the theoretical modelling of neural networks. Our central
result is that cortical surface geometry affects profoundly
signal propagation through the network, when compared
with idealized networks with the same coarse statistics: the
results contained in this section highlight clearly that signifi-
cant differences in spreading dynamics are obtained in the
network based on the cortical structure of the rat brain, com-
pared with more standard network models. Since networks
analogous to these standard models (defined in §2.2) are
employed frequently in the theoretical literature in order to
study the features of epileptic seizure initiation and dynamics,
the simulation results highlighted by figures 3-5 indicate
clearly that certain dynamics of relevance to seizure initiation
and progression (in particular, those highlighting the impor-
tance of the site of initiation within the network) are not
well captured by such approaches.

4, Discussion

In this paper, we have investigated numerically the influence
of the structure of a spatially embedded complex network on

the dynamics of the processes which occur upon it, with
application to the development of improved theoretical
models of the progression of epileptic seizures and spreading
depression over the cortical surface.

The key feature of this work is that we employ neuro-
imaging data from the left hemisphere of a rat brain to
define a neural network, whose spatial embedding represents
accurately the structure of the cortical surface. Typically,
theoretical studies of neural network dynamics employ
uniform lattices or random graphs in one dimension or two
dimensions: their focus being on in-depth analysis of various
theoretical connectivity rules (e.g. small-world or scale-free
networks) or signalling processes on the network dynamics.
Here, we define connectivity within our cortical network by
a simple criterion based on Euclidean distance (modified to
account for the folded cortical structure), and employ a basic
spreading rule to govern the propagation of activation. In
this way, we highlight clearly the influence of physiologically
relevant network structure on seizure dynamics, in isolation.

We compared numerical simulation of the propagation of
neural activity within three different network architectures:
the cortical neural network, a uniform square lattice graph
and an ensemble of two-dimensional geometric random
graphs, and studied these over a range of network connectiv-
ities. Note that we limit our current study on comparisons of
spreading on the brain surface to short-range connections
between nearby cortical columns; the role of long-distance
fibre tracts between brain regions is not part of this work. In
the parameter range chosen for the dynamic simulations
which we investigate in detail, these networks were shown to
be comparable in terms of their clustering coefficient and
characteristic path length; in the case of networks with low con-
nectivity (i.e. for values of r approaching the uniform lattice
spacing), the networks display distinctly different character-
istics. Despite their comparability, however, our simulations
indicate dramatic differences in the propagation of activation
through the various networks: in particular, we observe that
the time taken to full activation in the cortical network is
increased by a factor lying in the range 1.45-1.88. Especially
striking is the importance of the site of activity initiation: a dra-
matic spread in the number of timesteps required to achieve
full-network activation is observed in the rat network, even in
the case of a highly connected network (¥ = 0.5, (d,o) = 37.36).
Small variation is observed in the random graph; the dynamics
on the lattice graph is independent of initiation site. For less
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well-connected random graphs (r = 0.35, {dyana) = 16.09), the
variation is increased; however, the differences between all
three networks remain significant (data not included). More-
over, our simulations highlight that, across the parameter
range investigated here, different initial activation sites lead to
an approximately 1.7-fold reduction in full-network activation
time owing to variation in connectivity across these regions.
We employ a highly simplified model with which to inves-
tigate the spreading of activation over our network. Various
features of relevance to physiological neural networks, such
as complex node dynamics, long-range connectivity or sto-
chasticity, are omitted from our formulation; indeed, our
model draws no distinction between normal activation spread-
ing and that seen in epilepsy. However, such an approach
allows us to provide a more powerful exposition of the impor-
tance of the network structure imparted by the cortical
geometry, in isolation. We have shown that certain features
of the activation dynamics display distinct differences, when
compared with idealized models of the type commonly
employed in the literature. Most strikingly, we highlight a
variability in activation time for the cortical network, depend-
ing on initial activation site. This is pertinent to observations in
epilepsy, as not all brain regions have the same probability of
being starting points for seizures. Variability in cortical net-
works is well studied in terms of structural and functional
connectivity of brain regions, for example, concerning the
degree of nodes [38—40] and its consequence on network
robustness and performance [41,42]. However, our result is
remarkable in that variability is observed for curved brain
surfaces even in the absence of white matter fibre tract

connectivity. Our results lead us to conclude that studies
which do not take into account the spatial embedding of the
cortex risk simplifying neural activation dynamics in a poten-
tially significant way and are, therefore, unlikely to be able to
represent accurately activation dynamics of relevance to epi-
leptic seizures. We note, however, that in a physiological
setting, similar disparity in network activation may be induced
by including a range of other factors since the influences on the
network dynamics within physiological neural networks are
myriad; indeed, there is general agreement that no single
factor can explain the varied phenomena associated with
epileptic seizure dynamics.

We remark that epileptic seizure events are extremely rare
in wild-type rodents, and characteristics of epileptic activity in
animal models can differ from those observed in humans [34].
However, our initial study employing a network based upon
the cortex of a healthy rat has highlighted the potential impor-
tance of geometric structure in activation dynamics; similar
investigations in a network whose spatial embedding rep-
resents the convoluted human cortical surface therefore
forms important ongoing work. In addition, future work will
investigate how our predictions are altered under (i) a signal
transmission model which represents more accurately the be-
haviour a neural unit and (ii) the introduction of long-range
connections representing white matter structural connectivity.

M.K. was supported by the WCU program through the KOSEF
funded by the MEST (R31-10089), EPSRC (EP/G03950X/1) and the
CARMEN e-science project (http://www.carmen.org.uk) funded
by EPSRC (EP/E002331/1).
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