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We  developed  a  method  to estimate  electromagnetic  field  vectors  from  microelectrode  array  data.
The  vectors  allow  high-resolution  holographic  reconstruction  of spatiotemporal  activity.
Separation  of electromagnetic  source  density  and  dissipation  informs  on  activity  structure.
Electromagnetic  flow  maps  quantify  dynamic  causal  interactions  in  brain  tissue.
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a  b  s  t  r  a  c  t

Background:  Brain  function  is  dependent  upon  the  concerted,  dynamical  interactions  between  a  great
many  neurons  distributed  over  many  cortical  subregions.  Current  methods  of quantifying  such  interac-
tions  are  limited  by  consideration  only  of single  direct  or  indirect  measures  of a subsample  of  all  neuronal
population  activity.
New method:  Here  we  present  a new  derivation  of  the  electromagnetic  analogy  to near-field  acoustic
holography  allowing  high-resolution,  vectored  estimates  of interactions  between  sources  of  electromag-
netic  activity  that  significantly  improves  this  situation.  In  vitro  voltage  potential  recordings  were  used
to  estimate  pseudo-electromagnetic  energy  flow  vector  fields,  current  and  energy  source  densities  and
energy dissipation  in  reconstruction  planes  at depth  into  the  neural  tissue  parallel  to  the  recording  plane
of  the  microelectrode  array.
Results:  The  properties  of  the  reconstructed  near-field  estimate  allowed  both  the utilization  of  super-
resolution  techniques  to increase  the  imaging  resolution  beyond  that  of  the microelectrode  array,  and
facilitated  a novel  approach  to estimating  causal  relationships  between  activity  in  neocortical  subregions.
Comparison  with  existing  methods:  The  holographic  nature  of  the  reconstruction  method  allowed  sig-
nificantly  better  estimation  of  the  fine  spatiotemporal  detail  of  neuronal  population  activity,  compared
with  interpolation  alone,  beyond  the  spatial  resolution  of  the  electrode  arrays  used.  Pseudo-energy  flow
vector  mapping  was  possible  with  high  temporal  precision,  allowing  a  near-realtime  estimate  of causal
interaction  dynamics.

Conclusions:  Basic  near-field  electromagnetic  holography  provides  a powerful  means  to  increase  spatial
resolution  from  electrode  array data  with  careful  choice  of spatial  filters  and  distance  to  reconstruction
plane.  More  detailed  approaches  may  provide  the  ability  to  volumetrically  reconstruct  activity  patterns
on neuronal  tissue,  but  the  ability  to  extract  vectored  data  with  the  method  presented  already  permits  the
study  of dynamic  causal  interactions  without  bias  from  any  prior  assumptions  on  anatomical  connectivity.
Please cite this article in press as: Kjeldsen HD, et al. Near-field elec
interactions in neuronal tissue. J Neurosci Methods (2015), http://dx.d
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1. Introduction
tromagnetic holography for high-resolution analysis of network
oi.org/10.1016/j.jneumeth.2015.05.016

Neuronal function, from an electrical point of view, originates Q4
from the control and utilisation of current flow across biological
membranes. A myriad of different proteins are incorporated into
membranes to create a baseline ‘set point’ for neuronal membrane
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 H.D. Kjeldsen et al. / Journal of Ne

urrent flow and provide an incredibly rich diversity of magni-
udes and kinetics of deviations from this. These currents can be
uantified directly in individual neurons by invasive techniques
tilising direct electrical access to the intracellular environment of

ndividual – or small subsets of – neurons. However, neurons do
ot act alone: They are embedded in specific local and distributed
etworks allowing them to influence each other’s activity and act in
oncert to represent external (sensory) events and generate appro-
riate, patterned outputs (motor).

It is increasingly evident that cortical activity at the level of
nteracting populations of neurons holds the key to understanding
rain function (Wetzel and Stuart, 1976). Therefore, in considering
opulation-level neural behaviour one must consider interaction
cross the whole neuropil and whatever reciprocal, synaptic inter-
ctions with neurons emerge from this (Mitzdorf and Singer, 1979).
owever, there are two additional fates for the energy associ-
ted with changes in neuronal transmembrane current flow: First,
hanges in charge distribution across membranes lead to electrical
otential energy changes organised spatially within the extra-
ellular environment (the local field potential, LFP). These fields
an feed-back to influence neuronal activity directly (Taylor and
udek, 1984); Secondl, the same transmembrane charge distribu-

ion changes can give rise to magnetic fields. While these are much
eaker than the electric fields they may  also feedback to influence
euronal transmembrane current, at least over very short distances
McLean et al., 1995), unless fields are artificially large (Houpt et al.,
003).

In attempting to further understand the entirety of the electro-
agnetic interactions between brain regions, and link this to the

ausal dynamics of the system we noticed that similar problems
ave been addressed in acoustic imaging, specifically in near-
eld acoustic holography (NAH) (Maynard et al., 1985; Thomas
t al., 2010). We therefore set out to explore whether analogies
etween acoustics and electromagnetics could be used to gen-
ralize this technique to the neuro-electromagnetic case, i.e. to
ear-field electromagnetic holography (NEH). The idea of NEH goes

urther than considering the activity recorded in electrodes used to
tudy neuronal populations: By considering recorded activity as a
ap  of the electromagnetic interference between signals originat-

ng from a set of sources an estimate of these original sources can
e reconstructed via holographic methods. This method has poten-
ial advantages over existing source localisation methods for neural
lectrical activity. Whilst this approach has been shown to be valid
or a few coexistent sources (Alqadah et al., 2014) it needs to be
pplied to sensory (microelectrode) arrays to be useful in localis-
ng and characterising the many multiples of activity sources that
ypify population neuronal activity. For example, conventional cur-
ent source density (CSD) estimates map  the origin of activity by
onsidering only the average of sources in a given locale. In contrast,

 holographic reconstruction, by being dependent on interference
etween sources may  not suffer as much from this inherent aver-
ging effect—thus a greater spatial resolution of multiple source
tructures should be possible (see Maynard et al., 1985).

In addition, source reconstruction using acoustic holography
orks through the reconstruction of acoustic energy flow (Hald,

001). The electromagnetic analogy of this is the Poynting vec-
or, where the scalar is the electromagnetic energy flux density
nd the direction represents the flow from source to sink. That is
or a given source region the vector points in the direction of the

ean, largest recipient of the electromagnetic energy estimated
Williams and Maynard, 1980). Considering that causal effects of
ne population of neurons on another must reasonably be carried
Please cite this article in press as: Kjeldsen HD, et al. Near-field elec
interactions in neuronal tissue. J Neurosci Methods (2015), http://dx.d

y physical energy flow, whatever the conduit, we propose that
lectromagnetic energy flow vectors can be used to infer causal
ffects in neural tissue with fewer of the biological and statistical
ssumptions required for methods used presently.
 PRESS
nce Methods xxx (2015) xxx–xxx

However, for accurate reconstruction of sources nearfield holog-
raphy requires back-propagation of recorded signals through a
homogeneous, source-free medium (i.e. no additional sound or
electromagnetic generators between the electrode array and the
reconstruction plane of interest (Valdivia and Williams, 2007)).
While compensation for lack of homogeneity can improve CSD esti-
mates of electrical sources (Lęski et al., 2011), it forms a major
problem with acoustic sources (Williams and Valdivia, 2010; Bi
et al., 2015). This suggests a uniquely appropriate application for
NEH on cortical tissue: Brain electromagnetic sources have no
‘physical’ structure in the sense that they do not overtly modify the
signal conduction properties of the medium unless they become
excessive (for example in epilepsy). Resistivity in neuronal tissue
does change with activity, but with a relatively slow timeconstant
(5–10 s, Fox et al., 2004; Lopez-Aguado et al., 2001)—far slower
than even the slowest brain activity studied with conventional EEG
and local field potential recordings. In addition, permittivity has
been shown not to change at all during intense periods of electrical
activity (Yoon et al., 1999).

The problem of holographic reconstruction in media with mul-
tiple sources requires inhomogeneous wave equations to be used
to reach a precise, accurate answer. While this approach works
numerically with known additional sources this luxury is not
afforded by studies of brain tissue: here each microscopic com-
ponent of the neuropil may constitute a source at any given
time. The down-side of this is that any reconstruction will only
ever reflect an estimate of the true nature of sources present. On
the other hand, the ubiquitous, distributed nature of additional
sources provides a blanket ‘forcing’ of the wave equations required.
As a consequence the holographic reconstruction becomes prob-
abilistic, with only the largest, most spatially focal sources of
activity surviving the process. An additional implementation prob-
lem arises owing to the fact that the electrode arrays used for
invasive recording are effectively embedded within such a hetero-
geneous, spatially-distributed source. This invalidates the use of
holographic reconstruction in terms of providing absolute physical
quantities such as electric and magnetic fields. However, the use
of estimates of orthogonal partners to the measured electrical field
(the estimated magnetic field) still provides a valid means to vec-
torise the activity present and therefore attempt to improve spatial
resolution of source distribution through NEH. Thus the myriad
potential sources present in active neuronal tissue, and the rela-
tively static, homogeneous nature of the transmission properties
of neuropil (even with active sources) on physiologically relevant
timescales suggests that NEH may  provide an improved means to
estimate spatiotemporal activity patterns in the brain.

Here we  test this hypothesis and present a method for analysing
extracellular microelectrode array recordings. We  utilise the Poynt-
ing vector to estimate the electromagnetic energy transfer per
unit area of neuronal tissue. In doing so we are able to consider
a direct analogy of current source density—the electromagnetic
energy source density alongside electromagnetic energy dissipation
(the proportion of charge distribution that is dissipated rather than
contributing to the magnetic field) to provide a ‘super-resolution’
estimate of energy flow between brain sub-regions as a vector. We
test this method by demonstrating the improved spatial detail and
highly directional behaviour of a known, highly laminarly orga-
nised spatiotemporal dynamic phenomenon—the sleep-associated
slow wave oscillation in an in vitro experimental model.

2. Methods
tromagnetic holography for high-resolution analysis of network
oi.org/10.1016/j.jneumeth.2015.05.016

NAH typically involves the use of planar arrays of microphones
(Paillasseur et al., 2011). For an implementation with electromag-
netic sources from brain tissue the following precedented analogies
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Table  1
Analogous properties and nature of the components required for holographic reconstruction.

NAH NEH M/E  NEH calculation

Acoustic pressure Electric field M Spatial gradient of recorded voltage potentials
Propagation from microphone/electrode array to the reconstruction plane M/E *Inverse Fourier transform of spatial fourier transform of electric field

and  propagator (k-space filter)
Particle velocity Magnetic field E Wave vectors based on tissue properties (reconstruction plane only)
Intensity EM energy flow M/E  Electric field × magnetic field (reconstruction plane only)
Dissipation Dissipation E Dot product of reconstructed electric field and the product of electric

field and tissue conductivity
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interpolated data are acted upon in the same manner to give a
higher-resolution picture of the electric field within the slice at the
chosen reconstruction plane (Fig. 2Biii). From this the ‘magnetic
field’ was estimated, again taking into account the electromagnetic

Fig. 1. Basic application of near-field electromagnetic (NEH) holography. (A) Cartoon
illustrating the data collection paradigm and its relation to the near-field dimen-
sions used. Recordings of neocortical tissue voltage were taken with a 10 × 10,
square array of silicon electrodes with inter-electrode distance of 0.4 mm.  Arrays
were placed on the upper cut surface of the tissue (the real recording plane in the
figure) with the leftmost column of electrodes aligned to the pial surface. The recon-
struction plane used to estimate electromagnetic properties of on-going activity in
the  tissue was set between ca. 65 and 265 �m into the slice (distance z) to obtain
optimal spatial resolution (see Fig. 3). (B) Example of electromagnetic field source
reconstruction using the experimental approach outlined in (A) simulated using the
K-Wave toolbox (Treeby and Cox, 2010). Two circular sources of differing size and
distance from the slice surface (real recording plane) were simulated. (ii) Electrical
activity projecting from these sources was recorded as voltage change by the nearby
electrodes (black arrows) and interpolated to two  virtual electrode points (white
arrows) between each real electrode using the Papoulis–Gerchberg algorithm [12]. Q10
(iii) Real and interpolated data is projected back into the tissue from the recording
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AH = nearfield acoustic holography, NEH = nearfield electromagnetic holography. E
ssentially performed within a distributed source assignment of physical units to th

* One of a number of methods used in NAH.

Morgan, 2003) from other NEH implementations are helpful
see Table 1): Microphone arrays corresponded to microelectrode
rrays. Acoustic pressure and particle velocity corresponded to
he electric-field and the magnetic-field, respectively, and acous-
ic intensity corresponded to the Poynting vector (Williams and
aldivia, 2010). There is also an important analogy between the
coustic properties of the acoustic medium, and the complex
onductivity, permeability and permittivity of the neural tissue
Nicolas et al., 1998). We  obtained the relevant conductivity val-
es from direct measurements in rodent neocortex given in the

iterature by layer, and across and along layers. In conductive con-
itions the acoustic equations carry over directly, only now with
omplex wave numbers, and electromagnetic instead of acoustic
nterpretations (Goto et al., 2010). The near-field is characterized
y evanescent, exponentially decaying waves of high frequency,
hich contain detailed spatial information that is unrecoverable

n the far-field giving rise to the well-known diffraction limit on
maging resolution. However, when measured sufficiently close to
he sources (‘near-field’) and sampled at a sufficiently high rate the
vanescent waves can be recorded and included in the holographic
econstruction allowing recovery of detailed spatial information for
esolution beyond the resolution of the sensor array (Williams and
aynard, 1980).
To explore the practical usefulness of this method with elec-

romagnetic data we used planar Utah arrays consisting of 10 × 10
lectrodes with orthogonal separation of 0.4 mm placed on the sur-
ace of an isolated slice (450 �m thick) of neocortical tissue (Fig. 1A).
ecordings of voltage changes (0–30 kHz) in the neuropil during an

n vitro model of neocortical delta rhythms (1–4 Hz Carracedo et al.,
011) were used as the starting point of the holographic recon-
truction. These rhythms, like their in vivo counterparts during
eep sleep, are relatively stationary for many tens of minutes to
everal hours, thus permitting the use of the Fourier transform-
ased approach to source reconstruction (e.g. see Thomas et al.,
010). Fig. 1B shows the basic principles of the reconstruction pro-
ess. Initially, electromagnetic field sources in the active neural
issue project outward and generate voltage changes detected by
he electrode array in the real recording plane. This ‘real’ data was
rst interpolated to prepare for super-resolution (see below) using
he Papoulis–Gerchberg algorithm (Papoulis, 1978), a procedure
hown to enhance resolution of NAH reconstructions previously
Xu et al., 2008). We  increased resolution via interpolation 3 times
n each direction though the limits of the effect were not explored.

The reconstruction process required to obtain Poynting vector
stimates is summarised as pseudocode in Fig. 2A (and in detail
n the table of formulae used (Table 2)) and were as follows: First,
he electric field was calculated from the recorded voltage poten-
ials. This was then propagated in k-space (the spatial-frequency
omain, see Morgan et al., 2003 for single sensor implementation)
Please cite this article in press as: Kjeldsen HD, et al. Near-field elec
interactions in neuronal tissue. J Neurosci Methods (2015), http://dx.d

o the reconstruction plane to give an electric field estimate based
n wave-vectors constructed using the published electromagnetic
roperties of neuronal tissue (Fig. 2Bii). In this way  both the orig-

nal electrode voltage data (positions shown in Fig. 2Bi) and the
ectromagnetic M/E  = estimated or measured: Note: As the reconstruction process is
easurements is not strictly valid.
tromagnetic holography for high-resolution analysis of network
oi.org/10.1016/j.jneumeth.2015.05.016

plane (now a virtual emission plane) using a k-space propagator and filter (see text)
to  estimate the direction and intensity of electromagnetic energy flow (Poynting
vector, Fig. 2) from tissue properties. (iv) Accurate source structure reconstructed
using this holographic process is dependent on the physical relationship between
original source location and the chosen reconstruction plane.

dx.doi.org/10.1016/j.jneumeth.2015.05.016
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Fig. 2. Calculating the Poynting vector from the electric (measured) and magnetic (esti-
mated) fields. (A) Extracts of pseudocode highlighting the steps required to generate
the electromagnetic energy flow in the reconstruction plane. Electric and magnetic
fields were estimated at 0.1 mm (z) from the real recording plane (tissue surface)
by  applying a k-space propagator and filter constructed using published values of

Table 2
Table of formulae.

Characteristic wave number

k =
√
ε̂�ω2

ε̂ = ε
(

1 + i�/(ωε)
)

� is conductivity, � is relative permeability and ε is relative permeability

kz =
{√

k2 − k2
x − k2

y for k2
x − k2

y ≤ k2 (far-field)

−i
√
k2
x + k2

y − k2 for k2
x + k2

y > k2 (near-field)

kx and ky are spatial wave vectors depending on array layout
Wave vector:
K  = (kx , ky , kz)
K-space propagator from measurement plane to reconstruction-plane:
Gz = e−ikzz

z is propagation distance
Forward Fourier transform to K-space

�  = F
(
 
)

=
∫ ∞∫

−∞

∫
 eikxxeikyye−iωtdxdydt

Inverse Fourier transform from K-space

  = F−1 (� ) = 1
(2�)3

∫ ∞∫
−∞

∫
�e−ikxxe−ikyyeiωtdkxdkydω

K-space filler:

Kfilter =
{

1 − 0.5e((kr /kc)−1)/˛ for kr ≤ kc
0.5e(1−(kr /kc))/˛ for kr > kc

kr =
√
k2
x + k2

y

kc and  ̨ are filler parameters
Electric field at measurement plane:
E  = ∇ P
P  is measured potentials
Electric field at reconstruction-plane:
Ez = F−1(F (E)GzKfilter)
Magnetic field at reconstruction-plane:
Hz = F−1(K × F (Ez))
Energy flow poynting vector field at reconstruction-plane:
Sz = Ez × Hz

Energy source density at reconstruction-plane:
ESDz = ∇ · Sz
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224

225
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228

229
Energy dissipation at reconstruction-plane:
Dz = �Ez · Ez

properties of the tissue inherent in the k-space filter and assuming
no derangement of distal source activity by more proximal sources
(see Fig. 1B and Section 1). As the recording aperture in this example
is smaller than the source medium we  used zero-padding as a sim-
ple way to alleviate spectral leakage. More rigorous methods have
been reported (e.g. Liu et al., 2011) but were omitted for reasons
of computational tractability. The Poynting vector field was given
by a right-hand rule from these reconstructed electric and mag-
tromagnetic holography for high-resolution analysis of network
oi.org/10.1016/j.jneumeth.2015.05.016

netic fields (Fig. 2C). All analysis was performed using Matlab (The
Mathworks, Natick, USA) and code is available from the authors on
request.

conductivity, permeability and complex permittivity through neocortex. (B). (i) The
location of the real recording electrodes in the arrays used relative to a slice of neo-
cortical tissue maintained in an interface chamber (see text). (ii) The corresponding
basic structure of the layer-specific electromagnetic properties used to build the k-
space filter for back-propagation. (iii) The resulting estimates of electric field (blue
arrows) and magnetic field (red arrows) in the reconstruction plane (set in this
example 0.1 mm from the real recording plane) overlaid on the interpolated voltages
(red positive, blue negative relative to rest) taken from the recording plane. Arrow
length represents local field strength, arrow direction represents local field propa-
gation vector. (C) Overlay of the reconstructed electromagnetic energy flow in the
reconstruction plane onto the array of real electrodes and the tissue recorded from.
Arrows represent the local energy flow direction and intensity (angle and length
of  arrows, respectively). Note the strength of the electromagnetic energy flow does
not  map  linearly onto the original recorded voltages and the units for each of the
reconstructed properties plotted are arbitrary (i.e. they do not directly map  onto the
‘real’ EM field properties at source). (For interpretation of the references to color in
this  figure legend, the reader is referred to the web version of this article.)
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Fig. 3. Effects of k-space filter width and recording/reconstruction plane separation on estimated energy source density structure. (A) Energy source density (ESD) maps for different
k-space  filter widths (d). Note ESD is the electromagnetic correlate of current source density and is generated from the divergence of the Poynting vector. The degree of
spatial detail increases with finer spatial filtering until reconstructed activity begins to disappear into noise. (B) The spatial scale at which this occurs is dependent on the
relative  values of interelectrode distance (IED) and distance from recording to reconstruction plane (z). (C) Comparison with conventional activity maps. Current source
density  (CSD) reveals discrete source/sink loci but fails to capture the laminar organisation of the delta rhythm-related activity. Power maps (raw delta power from Fourier
transform of the recorded voltage signal per electrode) reveal the deep layer domination of this activity but not the overt laminar differences revealed by ESD. Right panel
shows a crude representation of the cortical anatomy within which the activity is recorded/reconstructed.
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Fig. 4. NEH superresolution is significantly superior to interpolation alone in reconstructing spatiotemporal properties of the delta rhythm. (A) Example powermaps of delta activity
recorded with a 10 × 10 electrode array. Left panel shows delta power (0.5–2 Hz) derived from the FFT of the original voltage recording. Middle panel shows the delta power
derived from the NEH method after halving spatial resolution by taking data only from every other electrode and inserting virtual electrodes as in Fig. 1A. Right panel shows
d originQ11
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elta  power derived from interpolation of data from every other electrode in the 

aps of the two methods and comparison of 3 periods of delta rhythm for the sa
ccuracy of the NEH superresolution was significantly better than interpolation (P =

Clearly the performance of the NEH reconstruction process
epended a great deal on the spatial constraints the k-space filter
ontains. In assessing this it was useful to consider the divergence
f the Poynting vector field. Visualising source and sink locations
ithin the reconstructed electromagnetic field (the Energy Source
ensity, ESD) gave not only a clear demonstration of the laminar
ature of the slow wave behaviour being studied, but also a means
o optimise the filter characteristics (Fig. 3). Altering the spatial
requency of the filter could ‘focus’ the reconstruction to optimise
he spatial resolution of the NEH process. However, too-tight a
lter resulted in loss of signal within the overall noise of the sys-
em (Fig. 3A, leftmost panel). Similarly, the relationship between
rray electrode separation and the distance from real recording
lane to reconstruction plane (z, see Fig. 1) was critical for optimal
econstruction. Greater distances generated more ‘blurred’ spatial
atterns of ESD, whereas reconstructing too close to the recor-
ing array generated highly fractured ESD spatial profiles (Fig. 3B).
espite this, considering the reconstructed ESD revealed a clearer

aminar structure to the activity in neocortex than obtained by
onventional current source density or raw power maps alone
Fig. 3C).

. Results

Two main advantages are apparent in using NEH over exist-
ng methods to spatially map  activity within brain regions and the
ausal interactions between them. First, in considering both elec-
rical and magnetic behaviour the holographic method should, in
rincipal, provide a better estimate of the spatial structure of activ-
Please cite this article in press as: Kjeldsen HD, et al. Near-field elec
interactions in neuronal tissue. J Neurosci Methods (2015), http://dx.d

ty beyond the resolution of the real recording electrode array. To
est this, power maps of delta activity, derived from the FFT of the
riginal data in a 10 × 10 array (Fig. 4A), were compared with those
erived from 2-fold spatially downsampled original data (i.e. taking
al dataset. B. Wavelet semblance (Grinsted et al., 2004; Cooper and Cowan, 2008)
ctrode/reconstruction vs. the original data (black circle in A). The spatiotemporal
8).

data from only every other electrode: a 5 × 5 array). Interpolation
of the original downsampled data, back to a 10 × 10 resolution pro-
duced inferior results to interpolation modified through the NEH
reconstruction. This was  apparent both in the spatial maps of delta
power (Fig. 4A) and in the similarity of the reconstructed timeseries
data using phase semblance (Grinsted et al., 2004; Cooper and
Cowan, 2008). Fig. 4B illustrates an example of the original, inter-
polated and NEH-reconstructed timeseries for a single electrode
on the array, and semblance maps of these comparisons between
the original data and the interpolated or NEH-reconstructed data.
Taken for all matrix elements in the semblance reconstruction the
performance of NEH reconstruction was highly significantly supe-
rior to interpolation alone (P < 0.02).

Second, in reconstructing a vector field it was possible to quan-
tify the directionality of the electromagnetic signals estimated
through NEH reconstruction (Fig. 5). This novel approach allowed
the visualisation of interactions between brain areas with: (a)
no confounding statistical problems generated by many-multiple
pairwise comparisons (Zou et al., 2010); (b) no reliance on accu-
rate autoregressive modelling of the original data (Dhamala et al.,
2008); (c) near-realtime quantification of any changes in direc-
tionality in the influence of one area over another. In addition,
the measures of energy dissipation and energy source density
in terms of source/sink location and magnitude could be con-
sidered separately from the electromagnetic causal directionality
(Fig. 5A). In doing so, fine temporal and directional structure was
observed within each delta period. Average energy dissipation per
delta period revealed nested higher frequency changes in activity
(Fig. 5B) which, in turn, corresponded to multiple, highly directional
tromagnetic holography for high-resolution analysis of network
oi.org/10.1016/j.jneumeth.2015.05.016

inter-areal interactions between superficial layers of primary and
secondary somatosensory cortex in the tissue, coupled with highly
interlaminar interactions dominating in deep layers within each
cortical region (Fig. 5C).
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Fig. 5. NEH reveals lamina-specific structure of spatial interactions nested within each period of the delta rhythm. (A) Estimation of the combined electromagnetic behaviour
of  neural activity from multiple periods (n = 60) allows the separation of the reconstructed signal into that which is ‘lost’ in terms of local activity in the system (energy
dissipation, upper left panel) and that which is propagated within the tissue (energy source density, upper right panel). Note, energy dissipation reflects the predominantly
infra-  and supragranular laminar structure of the delta rhythm (e.g. Carracedo et al., 2013) whereas source density (ESD) reveals a ‘chequerboard’ spatial structure in which
regions  propagate activity to their near neighbours both horizontally and radially in neocortex. Note the colorbar scales for dissipation and ESD have arbitrary units. (B) These
local  interactions, derived from the vector field (upper left panel) can be studied at discrete timepoints by plotting the magnitude (black line, upper right panel) against the
original, low pass filtered average delta period (blue line). Note the timepoint indicated by the red cursor corresponds to the vector field shown in the left panel. (C) Poynting
vectors averaged in 4 regions (deep and superficial primary (S1) and secondary (S2) somatosensory cortices (see (B) left panel for regional separation)) at 8 timepoints within
an  average delta period. The combined electromagnetic nature of the tissue-generated activity revealed a dichotomy between supra and infragranular layer interactions:
During  delta rhythms infragranular layers projected their energy predominantly interlaminarly whereas supragranular layers projected horizontally. In both cases at least
two  cycles of vector change were seen nested within each average delta period.

dx.doi.org/10.1016/j.jneumeth.2015.05.016
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. Discussion

An estimate of energy flow within neural tissue in general has
remendous advantages over other estimates of causal interactions
etween brain areas as the latter rely on statistical analysis of vari-
nce between many-multiple pairs of microelectrodes. These are
nherently far removed from the underlying neural activity, and
lso easily become intractable when the number of microelec-
rodes is high. In addition, in considering the tissue as a whole
o prior assumptions have to be made regarding which regions
onstitute ‘nodes’ in whatever network may  be active. Using the
EH process as described it was interesting to note that, even with
o prior assumptions on connectivity structure, electromagnetic
nergy magnitude and flow estimates validated the interlaminar
eocortical interactions and cross frequency interactions previ-
usly demonstrated by highly invasive (single neuron), detailed
odelling and experiment (Carracedo et al., 2013; Hughes and

runelli, 2013).
However, it is still early days for the NEH technique, and fur-

her study and reproduction is needed to verify its validity. It is
lear that both conceptual and implementation issues are possible
t this stage, and it is known from acoustics that many differ-
nt implementations are possible with different advantages; for
nstance the known limitations of the Fourier transform can be

itigated by data padding (Hald, 2001), or be replaced by time
omain (Zhang et al., 2011) or wavelet approaches (Thomas and
ascal, 2005). In the application presented here it was  clear that
are was needed to ‘focus’ the reconstruction plane on a potential
ohort of sources. Failure to match the parameters for the k-space
lter with the distance between the electrode (measurement) plane
nd the desired reconstruction plane resulted in blurring or break-
own of the source structure detected (Fig. 3) to a point where
onventional methods gave better results. This is in part due to
he non-passive nature of the projection medium: i.e. what sepa-
ates the electrodes from the reconstruction plane is neural tissue
hich is also likely to contain further sources (e.g. Williams, 1999).
ore recent approaches have suggested a method to minimise this

 and thus quantitatively optimise k-space parameters for a given
istance between recording and reconstruction planes – by com-
aring the difference in relative magnitudes of the contribution of
ropagated and evanescent waves at the two planes (Tang et al.,
012).

The good performance of this initial implementation (compared
o conventional CSD approaches) suggested that sources between
he electrode and reconstruction planes did not overtly derange the
olographic reconstruction process—a predicted outcome given
he minimal, if any, effects of time-discrete electrical activity on the

acroscopic resistivity and permittivity of neuropil (Lopez-Aguado
t al., 2001; Fox et al., 2004; Yoon et al., 1999). The ‘forcing’ effect
f additional sources on the numerical reconstruction process con-
trains the results of NEH reconstruction to only ever constitute
n estimate of the true source structure in the tissue. However,
hen there is no a priori knowledge of the explicit source structure,

nd that source structure is highly distributed and complex (as in
he case of active neuropil), this estimate become probabilistic: the
econstruction process will reveal only the largest, most spatially
onstrained activity patterns. As the very nature of cortical func-
ion is suggested by many to be based on probabilistic processes
e.g. see Rao et al., 2002) we see this caveat of the current method
o be advantageous. In addition, the basic nature of the reconstruc-
ion algorithm used may  also contribute to this process: As data in
ig. 3 show, NEH in this implementation is not a tomographic pro-
Please cite this article in press as: Kjeldsen HD, et al. Near-field elec
interactions in neuronal tissue. J Neurosci Methods (2015), http://dx.d

ess (i.e. cannot be used for volumetric reconstruction), because
he back-propagation technique is essentially a 2D-2D model, and

 2D-3D model is not unique (Devaney, 1978). This means that any
econstruction plane will exhibit some influence from sources in
 PRESS
nce Methods xxx (2015) xxx–xxx

nearby planes, and therefore more resembles a local depth aver-
age than a sharp focal plane. The reconstruction plane (and the
back-propagation filter) must therefore be picked heuristically to
produce the best image given the specific circumstances.

It might be also be particularly important to consider that
the energy flow estimates obtained with the present holographic
approach are complex valued, and may  therefore require a more
physical interpretation. In NAH the real part of the energy flow
estimate is associated with propagating energy waves whereas the
imaginary part is associated with resonant standing waves (Mann
et al., 1987; Domenico et al., 1996). In the electromagnetic case we
can therefore propose an analogous interpretation with the imag-
inary part reflecting resonant energy transfer (a known near-field
effect Lipworth et al., 2014). This view would suggest that we are
not only dealing with a neural circuit in the conventional synaptic
connectivity sense, but also a neural antenna network (as the clos-
est electrical engineering analogy), where ‘passive’ propagation of
electromagnetic energy through the neuropil also contributes to
neuronal population activity patterns through ephaptic coupling
(Jefferys, 1995).

In acoustics it is sometimes advantageous to record the par-
ticle velocity instead of the acoustic pressure, with the analysis
proceeding in the same way; the electromagnetic analogy would
then be to record the magnetic field instead of the electric poten-
tials as is done in MEG  (Cohen, 1968). It is also currently possible to
record both electric and magnetic consequences of neuronal popu-
lation activity concurrently (Tallon-Baudry et al., 1997), potentially
reducing the number of estimation steps required to derive the
Poynting vector. While basic calculations of optimal recording-
reconstruction plane distance (Tang et al., 2012) indicate this is
not possible with currently-employed superconducting detectors,
newer ‘room-temperature’ detectors that are locatable on the scalp
may  generate data that is amenable to NEH. Further testing of
this analytical approach is required. Finally, a more tomographic
approach may  be feasible for large electrode array recordings
with implementation of ‘compression’-based reconstruction algo-
rithms (Alqadah et al., 2014) However, the results presented here
demonstrate that a relatively simple reconstruction method for
NEH-derived vector fields can already provide a highly useful, novel
means to study the dynamics of causal interareal interactions in the
brain in the absence of prior assumptions about network structure.
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