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The connectome, or the entire connectivity of a neural system represented by network, ranges various scales from
synaptic connections between individual neurons to fibre tract connections between brain regions. Although the
modularity they commonly show has been extensively studied, it is unclear whether connection specificity of such
networks can already be fully explained by the modularity alone. To answer this question, we study two networks, the
neuronal network of C. elegans and the fibre tract network of human brains yielded through diffusion spectrum imaging
(DSI). We compare them to their respective benchmark networks with varying modularities, which are generated by
link swapping to have desired modularity values but otherwise maximally random. We find several network properties
that are specific to the neural networks and cannot be fully explained by the modularity alone. First, the clustering
coefficient and the characteristic path length of C. elegans and human connectomes are both higher than those of
the benchmark networks with similar modularity. High clustering coefficient indicates efficient local information
distribution and high characteristic path length suggests reduced global integration. Second, the total wiring length is
smaller than for the alternative configurations with similar modularity. This is due to lower dispersion of connections,
which means each neuron in C. elegans connectome or each region of interest (ROI) in human connectome reaches
fewer ganglia or cortical areas, respectively. Third, both neural networks show lower algorithmic entropy compared to
the alternative arrangements. This implies that fewer rules are needed to encode for the organisation of neural systems.
While the first two findings show that the neural topologies are efficient in information processing, this suggests
that they are also efficient from a developmental point of view. Together, these results show that neural systems are
organised in such a way to yield efficient features beyond those given by their modularity alone.
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1. Introduction

In network representation, neural networks at different
levels of organisation ranging from connections
between individual neurons to connections between
brain regions can be described coherently, if the
individual neurons or brain regions are substituted by
the nodes and the connection between them by the
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links. Also, the modular organisation found in different
levels of neural networks can be exhibited by network
modules, where a module is a subset of the nodes
having many connections among them and few to the
rest of the network [1].

The first species to show neural networks are
Coelenterates such as Cnidaria [2, 3]. These animals
show a diffuse two-dimensional nerve network called a
lattice network. In such networks, neighbours are well
connected but there are no long-distance connections.
For functionally specialised circuits, however, a regular

Phil. Trans. R. Soc. B 1–10; doi: 10.1098/rspa.00000000
This journal is c© 2011 The Royal Society



2

organisation is unsuitable. Starting with the formation
of sensory organs and motor units, neurons segregate
in modules; e.g. forming ganglia in the roundworm
Caenorhabditis elegans [4]. Forming such modules,
ganglia can process one modality with little interference
from neurons processing different kinds of information.
At one point of growing complexity of organisms,
having one module for one modality or function is
not sufficient. An example is processing of visual
information in primates where the visual module
consists of two network components: nodes that form
the dorsal pathway for processing object movement
and nodes of the ventral pathway for processing object
features such as colour and form. These networks where
smaller sub-modules are nested within modules are a
type of hierarchical network [5, 6, 7].

The modularity Q measures how modular a
given network is [8]. The human brain network for
the connections between brain regions or ROIs as
well as the neuronal network for the connections
between neurons show a high modularity compared to
randomly connected networks [6] and this modularity
is preserved from at least 4 to 40 years [9]. However,
there are numerous ways of constructing modular
networks with a given value of modularity. What
are specific to the chosen biological organisations
over alternative modular arrangements and what are
the advantages of them? In this article, we address
these questions on two different levels of organisation:
the connections between individual neurons in C.
elegans, the level of the micro-connectome [10],
and the connections between different human brain
regions, the level of the macro-connectome [11]. To
investigate the connection specificity of these networks
over alternative arrangements, we employ benchmark
networks generated by a link swapping process which
is controlled by the simulated annealing algorithm.
Such rewired networks can serve as control groups,
where the number of connections for each node and the
modularity of networks are kept constant.

First, at both levels we find that the clustering
coefficient, indicating how well information can
be distributed locally, and the characteristic path
length, indicating how difficult global integration
is, are high compared to alternative networks of
similar modularity. This shows a balance between the
need for communication within local circuits (high
neighbourhood connectivity within modules) and the
reduction of interference between modules (fewer
shortcuts linking different modules). Indeed, brain
disorders such as schizophrenia [12] and epilepsy [13]
can be linked to changes in local and global efficiency.
Second, the total wiring length is smaller compared

to the alternative networks of similar modularity. The
connectivity of the original network and alternative
networks are compared through their network of
modules, the coarse-grained network obtained when
human brain areas are considered as new nodes instead
of the ROIs. We find that the formation of fibre bundles,
or the fasciculation, is correlated with the reduced total
wiring length. A similar behaviour is observed from
the network of neurons and the network of ganglia in
C. elegans. To quantify this bundling behaviour, we
introduce the novel measure of dispersion indicating
how widely individual nodes are connected to different
modules of the network. Third, both neural networks
show lower algorithmic entropy than their alternative
arrangements. As the algorithmic entropy quantifies the
amount of information needed to construct an object,
this suggests that fewer rules are needed to encode
for the organisation of neural networks and the neural
systems are efficiently organised from a developmental
point of view [14].

2. Materials and Methods

Data

The human brain network used in this article
was from [15]. The connectivity was obtained from
5 individual subjects using the diffusion spectrum
imaging (DSI). The DSI is one of the protocols of
diffusion magnetic resonance imaging (dMRI), which
detects the diffusion pattern of water molecules in the
brain to predict the trajectory of fibre tracts. In the DSI,
first the brain was partitioned into anatomical areas
called the Brodmann areas and then each of them was
subdivided into a certain number of ROIs in such a way
that each ROI has a similar surface area. The number of
brain areas were chosen to be R= 66 and the number
of ROIs resulted in N = 998. The ROIs were regarded
as nodes and the brain areas as modules. Next, the
tractography was constructed from the diffusion pattern
and a link was assigned between two ROIs that are
connected by the predicted fibre tract. The total number
of links was E = 17, 865.

For C. elegans, a total of N = 279 neurons and
corresponding E = 2, 990 connections were used.
These included 1, 584 unidirectional and 1, 406
bidirectional connections. Biologically, they represent
672 gap junctions, 1, 962 chemical synapses and 376
connections where both gap junctions and chemical
synapses exist between the neuron pairs. As some
network measures are defined only for undirected
networks, all the unidirectional connections were
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replaced by bidirectional ones leading to a total of
2, 287 bidirectional links. Three-dimensional neuron
coordinates were used as described in [16]. The
information about the R= 10 ganglia membership for
modules was taken from [17].

The network of modules was defined as follows.
The modules, corresponding to the anatomical areas for
brain or the ganglia for C. elegans, were regarded as
nodes in place of the ROIs or neurons. Correspondingly,
two modules were assigned with a link between them
only if there is at least one link between a pair of
nodes each of which is contained by each module (see
Supplementary Figure S1).

Network measures

All the calculations, including measurement of
modularity and simulated annealing procedure (see
below), were performed by custom built codes in
C programming language and MATLAB (routines
are available at http://www.biological-networks.org/).
The characteristic path length (L) was the average
number of connections that have to be passed on the
shortest paths between all pairs of network nodes.
The clustering coefficient (C) was the proportion
of actually present connections, out of all possible
connections, among network nodes directly connected
to a node. It was calculated as the average over all
individual nodes of the network [18]. The small-world
index was calculated as σsw = (C/Crand)/(L/Lrand) or
equivalently σsw = (C/L)/(Crand/Lrand), where C and
L defined as above were measured from the observed
network and Crand and Lrand were the average values
from 100 Erdős-Rényi (ER) random network [19]. The
generation rule for the ER network was as following.
Initially N nodes are given without any connection.
At each time step, a link is added between a pair
of nodes which are selected among the N nodes at
random, avoiding multiple times of selection. This
step is repeated until the number of links becomes E.
Random networks have small Crand and small Lrand.
As a network becomes to have more small-worldness,
C/Crand increases and L/Lrand decreases to make σsw
increase faster. σsw = 1 when C =Crand and L=Lrand
or more generally when C/L=Crand/Lrand. σsw = 0
when C = 0. The total wiring length (W ) was the sum
of the Euclidean distance between all connections of
a network when the network nodes are provided with
spatial locations.

Modularity and link swapping

For a network of N -nodes, E-links and R-modules,
whose node index, i, runs from 1 to N and the module

to which node i belongs, qi, can take value from 1 to R,
the modularity was defined as

Q=
1

2E

∑
ij

[
Aij −

kikj
2E

]
δ(qi, qj), (2.1)

where Aij is (i, j) element of the adjacency matrix, ki
is the number of connections, or the degree, of node
i, and δ is Kronecker’s delta function [8]. It measures
what fraction of the links connect two nodes within
one module and its deviation from the case when the
links are distributed at random. The modularity can
be used for finding the modular structure of a given
network when it is unknown. In such a setting, an
optimal partitioning of the network nodes is searched,
which maximises the modularity of the given network.
Therefore, the assignments of nodes to modules are
varied while the connections of the nodes are fixed.
In this study, however, the predefined modules of
respective networks, i.e. the anatomical areas of human
brain and the ganglia of C. elegans, were regarded
as fixed. Each node already has its intrinsic module
membership. Instead, the connections between nodes
were varied by link swapping controlled by simulated
annealing.

The link swapping is a process which a pair of
links are selected and then two nodes at an arbitrary
end of each link are exchanged. Whereas the degree
of each node, as well as its distribution for the entire
network, is preserved before and after the manipulation,
the modularity of the network can be increased, be
decreased, or remain the same depending on the sort
of the selected pair of links. It is increased if a pair
of links are selected in such a way that at least two
nodes at the ends of different links lie in one module
and swapping is carried out to connect those two nodes.
Likewise, the number of intra-module links determines
the modularity of rewired network after the swapping
(see Supplementary Figure S1).

To alter the modularity of the networks to have
desired values, the selection of link pairs for swapping
process was controlled by simulated annealing method
as follows [20]. At each step, the link swapping is
attempted and the amount of change in modularity for
the attempt, ∆Q, is calculated. The attempt is accepted
with probability 1 if ∆Q≥ 0 or with probability
e∆Q/T if ∆Q< 0, where T is the control parameter
or temperature. Otherwise, the attempt is rejected
and the swapping is reversed to recover the original
connectivity. When T → 0, link swappings are accepted
only when the modularity increases and the simulated
annealing becomes equivalent to the greedy algorithm
for finding the maximum modularity. Originally, the
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simulated annealing was devised to avoid trapping into
local extrema as the greedy algorithm often does, and
T is incrementally decreased from a finite value to
infinitesimal so that the swapping happens a certain
number of times at each T value. The consequent
maximum value during the entire time steps is expected
to be the global maximum. In a similar manner, to
obtain a network with the desired modularity Qd, one
can set the problem to minimise |Q−Qd|.

However, in this study, we employed a simpler
method since the minimisation procedure is
computationally expensive and the networks from
the two different methods are theoretically equivalent
to each other. The alternative method took advantage of
the fact that the modularity, unless small fluctuations,
converges to a single value for a given temperature.
After a sufficient number of link swappings are
performed, the connection specificity of the original
network is lost and the resulting network has desired
modularity but otherwise maximally random. Any
choice of network snapshot at this state is statistically
identical to each other, and the entire set of such
networks is the ensemble of networks with the given
modularity. In practice, we first performed 800× E
times of link swapping for a given temperature, and
then sampled 100 network snapshots during additional
200× E of steps.

Dispersion

We introduced the novel measure, dispersion D, of
a network which shows how widely the connections
are distributed across different modules. The dispersion
of an individual node i was defined as Di =Ri/R
where Ri is the number of different modules to which
the node is connected to (brain areas for the human
connectome or ganglia for the C. elegans connectome)
and R is the total number of modules (66 and 10,
respectively). The maximum dispersion of a node is
1 in the case where the node is connected to at least
one node in all other modules of the network. The
dispersion of a network is the average dispersion for
all nodes: D=

∑
Di/N where N is the number of

nodes (998 ROIs for the human connectome and 279
neurons for the C. elegans connectome). Note that the
modules in this study are anatomical units (brain areas
or ganglia) and not the modules defined by network
analysis module detection algorithms [1]. However,
alternative definitions for module can also be applied,
and the dispersion could serve as a useful measure for
future studies.

Algorithmic entropy

Algorithmic entropy was used as a measure for
the amount of information the networks bear. It was
originally introduced as a conceptual measure for
any kind of physical or abstract objects, and later a
practical way to quantify it was devised [21]. Assume
an object saved in a computer storage device. If the
object contains regularities, it can be described by
a shorter message leading to less storage usage. A
compression algorithm is a standard way to detect
such regularities and reduce storage usage, and the
compressed data size can give an estimate of the
amount of information. To apply this to the neural
networks, we saved the networks in the format of
unweighted adjacency matrices into N ×N int8
arrays, whose (i, j) element takes value 1 if nodes i
and j have a connection to each other and otherwise 0.
Any configuration of networks with the same number
of nodes N has N2 bytes of data size. Then, minimum
compression size for each of the adjacency matrix
arrays for the original connectomes as well as the
rewired network ensembles for different values of Q
was found by the simulated annealing method similar
to above. The compression was performed by the gzip
library which uses the Lempel-Ziv coding [22]. The
compression ratio, the ratio of the compressed data size
to the original size of the array in bytes, was measured
to indicate the relative amount of information in the
networks. As the adjacency matrix of the networks
are symmetric and sparse, more efficient data storing
strategy could be devised. Although this can change
the quantitative values of the compression ratio, it is
unlikely that the qualitative trend of the result from the
original and alternative networks would change.

For simulated annealing, the objective measure to
minimise was the compression size Z and the variable
was node index assignment. Whereas the assignment
of node index, i.e. which node becomes the node i, is
arbitrary, the shape of the adjacency matrix depends
on the index assignment and in turn the compression
size depends on the shape. As the algorithmic entropy,
by definition, aims to measure the upper bound of
the amount of information, the node index assignment
needs to minimise the size of compressed array. At
each time step of the simulated annealing, the node
indices were reassigned by exchanging the indices of
two nodes i and j, which is equivalent to exchanging
the i-th and j-th column and row of the adjacency
matrix. Then ∆Z was measured by comparing the Z
values before and after the reassignment, to determine
such a reassignment should be kept or reverted with the
probability of 1 when ∆Z ≤ 0 or with probability of
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e−∆Z/T when ∆Z > 0. T was incrementally decreased
from a finite value to infinitesimal so that the index
reassignment happens a certain number of time steps at
each T value. The global minimum Z during the entire
time step was recorded.

3. Results

To illustrate the connectivity of the neural networks, we
calculated the network measures of the human and C.
elegans connectome. Two relevant measures, L and C,
were compared to those of the ER random networks
with the same number of nodes and links (Table 1).
First, the characteristic path length L, related to the
global efficiency of reaching other nodes at the global
level, shows the average number of connections that
need to be crossed to go from one network node to
another. Second, the clustering coefficient C, related to
the local efficiency of reaching nearby nodes, indicates
how well neighbours of a node are connected, i.e.
what proportion of potential links between neighbours
actually exists. Third, the small-world index σsw
indicates to what extent the fraction of two small-
world measures, C/L, of a network deviates from that
of random networks. Finally, we observed the total
wiring length that is the sum of the approximated
metric lengths of all individual connections. Note that
the Euclidean distance in three dimensions gives an
estimate or lower bound of the length of a connection,
as the curvature in actual wiring between nodes makes
the real distance longer. More information on network
measures can be found in [1, 23].

The human macro-connectome consists of R= 66
brain areas (modules),N = 998 ROIs (nodes), andE =
17, 865 connections (links) between ROIs in total. The
average degree,<k >, is 35.80. The characteristic path
length, L, is 3.07 and the clustering coefficient, C,
is 0.47. For comparison, the ER networks with the
same number of nodes and links yield L= 2.22 and
C = 0.036 (average over 100 generated networks). The
high small-world index σsw value of 9.27, as well as
the high C value compared to Crand, suggests that the
human brain connectome is a small-world network. On
the other hand, it is interesting to note that L is slightly
larger than Lrand which suggests the opposite. It is due
to the fact that L can be reduced drastically by only a
few extremely long-range connections. While the ER
networks can have such long-range connections, the
connection range of human connectome is relatively
limited. The total wiring length W is 493.5 m. The
modularity Q is 0.26.

For the C. elegans micro-connectome of N = 279
neurons and E = 2, 287 links, L= 2.43 and C = 0.34
whereas Lrand = 2.30 and Crand = 0.059, which gives
the small-world index σsw = 5.37. Similar observations
can be made as the case of human connectome: C
and σsw indicate that the C. elegans connectome is
a strongly small-world network, but its L is sightly
larger thanLrand due to the lack of extremely long-range
connections. The total wiring length W is 588.2 mm.
The modularity Q is 0.15.

From these basic measures, the connection
specificity of the networks can be roughly depicted.
Both networks are small-world with few long-range
connections and have modular organisation. Since the
modularity values, 0.26 for human and 0.15 for C.
elegans, are small compared to those of other networks
known to have modular structure, the significance
of the modular organisation could be questioned.
However, these networks, though small, do have
modularity indicated by the values when compared to
the completely randomized, zero-modularity networks
obtained by the link swapping as seen below.

[Table 1 about here.]

To understand the connectivity in detail, next we
compared the network measures of the connectome
to their respective benchmark networks which were
generated through the link-swapping process controlled
by simulated annealing as described in Methods.
Each node of the benchmark networks has one-
to-one correspondence to a node of the original
network, and has the same degree and membership
to a module as the original node. By changing
the control parameter T of the simulated annealing
process, the resulting benchmark networks with varying
modularities were obtained. The relation between T
and resulting Q is given in the Supplementary Figure
S2 and Supplementary Table S1. Figure 1 visualises the
original neural networks and corresponding benchmark
networks with different modularities.

[Figure 1 about here.]

The network measures of the original and benchmark
networks are shown in Figure 2. The quantities, L,
C, σsw, and W , show strong positive or negative
correlations to Q for the benchmark networks, whereas
the values from the original network deviate from the
trends of the curves in all cases. In general, as the
modularity grows, the number of local loops increases
and the number of long-range connections decreases.
Therefore, the increase in L and C, as well as the
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decrease in W , with respect to growing Q is easily
understood. For all the network measures, the original
neural networks show marked differences to alternative
arrangements with the same modularity. In addition,
some values for the original networks can only be
reached for much higher modularity in alternative
networks or cannot be reached at all (L, C, and W
for the human connectome). Note that the clustering
coefficients of the original networks are higher than
those of alternative networks of the same modularity,
which suggests better local interaction efficiency. The
high characteristic path length, on the other hand,
suggests reduced global communication efficiency.

[Figure 2 about here.]

What made the original neural networks deviate
from the tendency of alternative benchmark networks,
or what is specific to the connectivity of the original
networks? The answer is that one module of the neural
networks is connected only to a small number of
other modules, and corollarily, a pairs of modules are
connected to each other by a redundant number of links.
A pair of modules are considered to be connected to
each other if any member nodes of them are connected.
To test such connectivity between modules, the network
of modules for both connectomes and examples of their
benchmark networks were visualised in Figure 3. A
visual inspection immediately shows that Figure 3a for
the human connectome is sparse and Figure 3b for a
benchmark network of it is dense. This effect is also
visible, though less apparent, from Figure 3d for the C.
elegans connectome and Figure 3e for the benchmark
network.

As discussed above, the number of links before and
after the link swapping does not change. Therefore, the
observed difference in link density must have come
in during the process of coarse-graining the network
of nodes into the network of modules. Note that the
multiple number of links between a pair of modules
converge into a single link on the network of modules.
Accordingly, the number of links on the network of
modules is determined by the number of other modules
the modules are connected to. Sparse connectivity of
the network of modules implies that each module is
connected to only a small number of other modules
on the network of nodes and that a pair of modules
are connected to each other by a redundant number of
links. This is observed as bundling of fibres towards
relatively few target nodes in the brain connectome,
and it is also found in C. elegans connectome, where
neurons are able to follow early established pathways,
e.g. in the ventral cord [16]. On the other hand, the

benchmark networks lose such connection specificity
during the link swapping. A part of the multiple links
from a module to another in the original networks
are redirected to multiple number of new modules
during the link swapping process, making the number
of modules to which they connect larger but the number
of links between a given pair of modules smaller.

[Figure 3 about here.]

As a way to measure this, we introduced a novel
network property called the dispersion D. It measures
the average proportion of modules to which a network
node is connected. Note, that this is different from an
existing measure, the participation coefficient, which is
the proportion of a node’s connections that connects to
other modules, as the dispersion also indicates to how
many other modules a node is connected to. For the
human connectome, the dispersion is 0.12, indicating
that each ROI is, on average, connected to 12% of
all anatomical brain areas (Figure 3c). For C. elegans
connectome, with a dispersion of 0.46, each neuron is,
on average, connected to 46% of all ganglia (Figure
3f). These values for the connectomes are much lower
than those of the benchmark networks with similar
modularity. Human benchmark networks with Q=
0.25 have D= 0.31 (larger than the value of human
connectome by factor of 2.6) and C. elegans benchmark
networks with Q= 0.15 have D= 0.60 (factor of 1.3).
In addition, such low dispersion values can only be
reached for much higher modularities in alternative
networks of C. elegans, or cannot be achieved at all
for alternatives of human connectome. Less distributed
fibres also reduce the total wiring length, meaning
that less energy is needed in connection establishment
(myelination) and maintenance (recovery to the resting
potential after transmitting an action potential) [24, 25,
26].

These considerations on the costs of material and
energy can be seen as related to the physical structure
or ‘hardware’ of neural networks. However, costs
of the neural ‘hardware’ are not the only potential
evolutionary constraint [27]. Complementary to the
concept of ‘hardware’, the rules for changing the
pattern of connections and connection weights can be
considered as the ‘software’ of the brain. Connection
weights can adapt through learning and connection can
be rewired after a lesion or traumatic brain injury [28].
However, looking at changes during brain development,
the early perinatal large-scale architecture seems to be
remarkably stable. Eliminating activity propagation by
blocking neurotransmitter release has little effect on
the layer and cortico-cortical architecture [29]. Such
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invariance in the organisation of neural systems could
be considered as determined by genetics factors.

Hence, following question can be raised: how
much genetic information is needed to encode the
connectivity patterns in human and C. elegans? One
estimate, based on earlier studies in metabolic networks
[30], is the algorithmic entropy or Kolmogorov
complexity [21]. The algorithmic entropy is the length
of a “sentence” describing an object in a “language”.
The upper bound of the amount of information
embedded in any type of data, here the connectivity
matrix, can be approximated by the size of compressed
data compared to the size of original data. It can be
simply calculated by saving the data in a standard
format and then applying a data compression. The
compression ratio is the size of the compressed data
divided by the size of the original data in bytes.
The compression ratio approaches 1 when almost the
same amount of information is needed to describe a
network structure, whereas the ratio is close to 0 when
little information is needed to encode the connectivity.
In biological terms, we can think of the compressed
data as the genetic information, the decompression
algorithm as the pattern formation mechanism that is
guided through genetic factors, and the uncompressed
connectivity matrix as the organisation of neural system
that follows neural development.

As shown in Figure 4, the amount of information
in the benchmark networks decreases as modularity
grows larger. The networks with locally constrained
connections are easier to describe than those with many
long-range connections, thus have less information. The
original networks, however, largely deviate from the
curve. The values are comparable to, or even smaller
than, the case of maximum modularity. This is also
a consequence of the abundant connections between
modules. Even when there are a considerable number
of connections that are not locally confined, they can
be easily described if the connections direct towards
similar destinations. The connection specificity of the
human connectome, which is locally dense and has
only a limited number of global connections between
brain areas, requires less information in describing
the topology. Similar observations and arguments are
applied to the C. elegans connectome as well.

[Figure 4 about here.]

4. Discussion

Neural systems show a modular architecture at
different hierarchical levels, ranging from the network

of individual neurons to network of brain regions.
Observing human and C. elegans neural networks,
we showed that the original networks are markedly
different from the alternative benchmark networks.
From both of the connectomes, we found the evidences
indicate that local information distribution is more
efficient but global integration is less so by studying
the clustering coefficient and the characteristic path
length, respectively. We also found that metabolic
costs for establishing neural connections are low,
which is suggested by relatively small total wiring
length. To explain these results with the connection
specificity of the neural networks, we introduced the
novel measure dispersion, the ratio of modules to
which an individual node is connected on average. By
quantifying the distribution of connections across the
modules, we found that smaller dispersion is specific
to the original neural networks. Third, both neural
networks showed a low algorithmic entropy, which
indicates less requirement for the rules to organise the
architecture of neural networks.

Increased separation reduces spreading and
interference

Characteristic path lengths of neural networks were
high. Relatively high path length makes rapid spreading
of activity less likely, as for epileptic seizures [31].
Sparse connectivity between modules can become a
bottleneck for information flow. On the other hand,
higher connectivity between modules or merging
of modules can enhance the likelihood of activity
propagation—we previously described this bottleneck
behaviour as topological inhibition [32]. Recent studies
of functional connectivity in epilepsy patients have
indeed shown a change in the modular architecture.
More connections between modules as well as merging
of modules have been observed from the patients
[13]. Therefore, large characteristic path length of
neural systems as shown in this study supports healthy
processing of neural systems [33, 34, 35]. At the
same time, increased neighbourhood connectivity, as
measured by high clustering coefficient, renders a
strong local interaction possible within a functionally
related brain area or ganglion. In the similar line
of argument, a study of oscillatory dynamics on
neural networks has shown that the modular structure
enables strong synchronization within modules and
weak between them [36].

Reduced dispersion decreases total wiring length

Low total wiring length reduces metabolic costs
for connection establishment and at the same time
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obstacles activity propagation in neural systems [33, 34,
37]. For both the human and C. elegans connectome,
we saw reduced dispersion of connections which
is linked to the decreased total wiring length. As
primate and nematode systems are close to the optimal
arrangement for reducing wiring length [33, 38], any
re-arrangement of connections to spread more widely
throughout the network will lead to the formation of
longer connections in the system. A mechanism that can
limit dispersion in fibre tract systems is fasciculation of
axons. The fasciculation is a mechanism that a small
number of pioneer neurons form pathways that guide
the axons of the following neurons, resulting in a bundle
of axon fibres. This might also be the case for C. elegans
where some neurons in the ventral cord are formed
early on [16] providing a pathway between anterior and
posterior parts of the worm. The reliance on pioneer
fibres might prevent more diverse connectivity to other
areas located afar.

Given the relation between dispersion and other
network properties that change in schizophrenia [39],
autism [40], or epilepsy [41], a reduced coherence
of fibre tracts might be an important component in
the path towards developmental diseases. Moreover,
the dispersion might be related to changes in
diffusion imaging, since a more distributed pattern of
connectivity would break apart the fascicular pattern
of fibre tracts. Therefore, we would expect that higher
values of dispersion are associated with lower values of
fractional anisotropy (FA) and to a shift towards more
regular networks with higher characteristic path length
as well as clustering coefficient. For neural disorders,
for example, a shift towards regular networks has been
reported for epilepsy [42] and lowered FA was reported
for schizophrenia [43, 44]. Note, however, that lower
FA might not only result from more diffuse fibre tracts
within a voxel but also from reduced myelination.

Development of modular neural networks

Both of the connectomes showed higher
Kolmogorov complexity as measured through the
compression ratio. This algorithmic entropy is different
from the information theory inspired entropy, which
has been applied to brain networks [45]. Kolmogorov
complexity shows how much code is needed to
generate an object. The generation of neural networks
is the process of neural development. It can be
driven by several factors including genes, epigenetic
factors, and self-organisation. Although we only
begin to understand the relation between genes and
connectomes [46, 47], it has been pointed out that gene
expression patterns which mediate growth factors and

guidance cues play an important role in determining
the connectivity of neural systems [48]. However, gene
expression and the inclusion of genes into the genome
are costly endeavours that would be expected to be
under evolutionary pressure. Indeed, neural systems try
to reduce the amount of genetic encoding that is needed
for neural networks. At early stages of development
in C. elegans, most long-distance connections can be
established when the neurons are nearby [16]. This
can reduce the need to control axon growth over long
distances. The lower dispersion, which we found in
both connectomes, might be another mechanism to
reduce the amount of code requirement. Altogether,
this suggests that the neural system might be efficient
not only for the metabolic ‘running costs’ [24] but also
in terms of their developmental mechanisms.

Which developmental mechanism could influence
the modular organisation of neural systems? Several
potential biological mechanisms for generating
hierarchical modular networks have been described.
One way is to start with an existing network and
generate copies of the network where the copies retain
the same internal connectivity as the original network
but also establish connections directly to the original
network. Variations of this method can be used to
generate hierarchical scale-free networks [49] and
were also thought to lead to cortical connectivity-like
networks [50]. The timing of synaptogenesis and cell
birth can also be crucial for development [16, 51]. For
modular networks, time windows during development
can lead to multiple modules where the module
number, module size, and inter-module-connectivity
is determined by the number, width and overlap of
developmental time windows for synaptogenesis,
respectively [52, 53].

Link swapping perturbs lattice structure

Neural systems can be seen as lattice networks,
using two-dimensional sheets of tissue preferring to
connect to nearby nodes [54] with additional long-
distance shortcuts to promote rapid processing and
integration of information [33]. The connections are
established with geometrical constraints [55]. Previous
studies have shown that lattice networks show a low
compression ratio compared to other topologies [56].
During the link swapping process, however, such
geometrical constraint becomes relaxed. A rewired link
can establish a new connection with any node in the
module (intra-module link) or any node in the entire
network (inter-module link). It results in as perturbation
of the lattice structure of original networks and was
manifested by the increase in dispersion as seen above.
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High dispersion prohibits efficient compression and
the Kolmogorov complexity of the perturbed networks
becomes high. It has been claimed that other measures
of the neural networks, such as characteristic path
length, clustering coefficient, and modularity, can also
be interpreted as those of regular networks [55]. The
current study rediscovers such findings by showing that
perturbation in lattice structure makes those measures
deviate from the original values.

Conclusions

In summary, both C. elegans and the human
connectome show reduced global efficiency (higher
characteristic path length), increased local efficiency
(higher clustering coefficient), and reduced metabolic
cost (lower total wiring length) compared to random
modular networks. A marked difference in the
organisation of the connectomes that is relevant to
those properties is their low dispersion. The specific
modular organisation of the connectomes requires
fewer rules to construct it (lower algorithmic entropy),
or fewer genetic factors to develop such neural system.
Together, these results show that neural systems across
different levels, from the network of neurons to the
network of brain regions, commonly have efficiencies
in multiple aspects listed above. Hierarchical natures
of the modular organisation of these connectomes and
how they can be understood in the aspect of the multiple
constraints given by various network measures [6, 7]
remain as a future study.
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FIGURES 11

Figure 1. Adjacency matrices of the connectomes. The matrices represent the network of ROIs for the human brain (a) and the network
of neurons for C. elegans (b), respectively. Each dot represents a fibre tract between ROIs in (a) or an axonal connection between neurons
in (b). For both humans and C. elegans, we analyzed benchmark networks with similar (=), increased (>), or decreased (<) modularity Q
relative to the original neural networks.
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Figure 2. Small-worldness are different in the connectomes. The small-world measures, characteristic path length L, clustering
coefficient C, small-world index σsw, and total wiring length W , of human (•) and C. elegans (�) connectomes with respect to modularity,
Q, which is varied by link swapping. Note that W is normalised with respect to the values of the original neural networks. Unobservable
error bars lie within the symbols. The vertical dashed lines denote the values of the original networks. The original networks show more
global segregation (higher L suggests lower global efficiency) and more local integration (higher C suggests higher local efficiency) at the
same time.
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Figure 3. Connectivity of modules and the dispersion. The networks of modules for the (a) human (brain areas; horizontal plane) and
(d) C. elegans (ganglia; lateral view) connectomes, and those of the benchmark network snapshots with similar modularity, (b) and (e),
respectively. Each node is a module of the networks, whose size is proportional to the square-root of the number of nodes in the module.
The locations are given by the centres of mass of its constituent ROIs or neurons. Note that the node locations for C. elegans are scaled
differently in x- and y-axis for visualisation, and do not represent the actual coordinates. The dispersion D of human (c) and C. elegans (f)
networks (data point on the dashed vertical line) is much lower than those of the benchmark networks.
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Figure 4. Compression ratio as a function of modularity. The compression ratio is defined as the size of the compressed network divided
by the size of the original network in bytes when the networks are represented by the adjacency matrices. It is shown for the original
(vertical dashed lines) and rewired networks of human (•, left axis) and C. elegans (�, right axis).



FIGURES 15

Table 1. Network measures depicting the connectomes. Network measures for the human brain network with 998 nodes and the C.
elegans neuronal network with 279 nodes: Q modularity; D dispersion; L characteristic path length; C clustering coefficient; σsw small-
world index. The values for ER random networks, Lrand and Crand, show the average and the standard deviation over 100 ER networks.

Q D L Lrand C Crand σsw
Human 0.26 0.12 3.07 2.231± 0.001 0.47 0.036± 0.002 9.27
C. elegans 0.15 0.46 2.43 2.300± 0.002 0.34 0.059± 0.001 5.37


