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connectome at the macroscopic level of connectivity between brain regions as well as the microscopic level of
connectivity between neurons. We will describe topological features at three different levels: the local scale of
individual nodes, the regional scale of sets of nodes, and the global scale of the complete set of nodes in a

network. Such features can be used to characterize components of a network and to compare different

Ié(e;;r/:;/é)arld;.etworks networks, e.g. the connectome of patients and control subjects for clinical studies. At the global scale, different

Neural networks types of networks can be distinguished and we will describe Erdés-Rényi random, scale-free, small-world,

Neuronal networks modular, and hierarchical archetypes of networks. Finally, the connectome also has a spatial organization and

Brain connectivity we describe methods for analyzing wiring lengths of neural systems. As an introduction for new researchers in
Connectome the field of connectome analysis, we discuss the benefits and limitations of each analysis approach.

Network analysis © 2011 Elsevier Inc. All rights reserved.
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1. Introduction

The set of connections in neural systems, now called the
connectome (Sporns et al., 2005), has been the focus of neuroanatomy
for more than a hundred years (His, 1888; Ramoén y Cajal, 1892).
However, it attracted recent interest due to the increasing availability
of network information at the global (Burns and Young, 2000;
Felleman and van Essen, 1991; Scannell et al., 1995; Tuch et al., 2003)
and local level (Denk and Horstmann, 2004; Lichtman et al., 2008;
Seung, 2009; White et al., 1986) as well as the availability of network
analysis tools that can elucidate the link between structure and
function of neural systems. Within the neuroanatomical network
(structural connectivity), the nonlinear dynamics of neurons and
neuronal populations result in patterns of statistical dependencies
(functional connectivity) and causal interactions (effective connec-
tivity), defining three major modalities of complex neural systems
(Sporns et al., 2004). How is the network structure related to its
function and what effect does changing network components have
(Kaiser, 2007)? Since 1992 (Achacoso and Yamamoto, 1992; Young,
1992), tools from network analysis (Costa et al., 2007b) have been
applied to study these questions in neural systems.

What are the benefits of using network analysis in neuroimaging
research? First, networks provide an abstraction that can reduce the
complexity when dealing with neural networks. Human brains show a
large variability in size and surface shape (Van Essen and Drury,
1997). Network analysis, by hiding these features, can help to identify
similarities and differences in the organization of neural networks.
Second, the overall organization of brain networks has been proven
reliable in that features such as small-worldness and modularity,
present but varying to some degree, could be found in all human brain
networks (and other species, too). Third, using the same frame of
reference, given by the identity of network nodes as representing
brain regions, both comparisons between subjects as well as
comparisons of different kinds of networks (e.g. structural versus
functional) are feasible (Rubinov and Sporns, 2010).

The analysis of networks originated from the mathematical field of
graph theory (Diestel, 1997) later leading to percolation theory
(Stauffer and Aharony, 2003) or social network analysis (Wasserman
and Faust, 1994). In 1736, Leonhard Euler worked on the problem of
crossing all bridges over the river Pregel in Konigsberg (now
Kaliningrad) exactly once and returning to the origin, a path now
called an Euler tour. These and other problems can be studied by using
graph representations. Graphs are sets of nodes and edges. Edges can
either be undirected going in both directions or directed (arcs or
arrows) in that one can go from one node to the other but not in the
reverse direction. A path is a walk through the graph where each node
is only visited once. A cycle is a closed walk meaning a path that
returns back to the first node. A graph could also contain loops that are
edges that connect a node to itself; however, for analysis purposes we
only observe simple graphs without loops. In engineering, graphs are
called networks if there is a source and sink of flow in the system and a
capacity for flow through each edge (e.g. flow of water or electricity).
However, following conventions in the field of network science, we
will denote all brain connectivity graphs as networks.

For brain networks, nodes could be neurons or cortical areas and
edges could be axons or fiber tracts. Thus, edges could refer to the
structural connectivity of a neural network. Alternatively, edges could
signify correlations between the activity patterns of nodes forming
functional connectivity. Finally, a directed edge between two nodes
could exist if activity in one node modulates activity in the other node
forming effective connectivity (Sporns et al., 2004). Network repre-
sentations are an abstract way to look at neural systems. Among the
factors missing from network models of nodes, say brain areas, are the
location, the size, and functional properties of the nodes. In contrast,
geographical or spatial networks also give information about the
spatial location of a node. Two- or three-dimensional Euclidean

coordinates in a metric space indicate the location of neurons or areas.
However, location can also be non-metric where the distance
between two nodes has ordinal values (e.g. location of proteins
given by a reaction compartment within a cell).

The application of network analysis identified several changes
during aging and disease that can form biomarkers for clinical
applications. During aging, for example, functional connectivity to
neighbors at the local level and other brain areas at the global level is
reduced particularly affecting frontal and temporal cortical and
subcortical regions (Achard and Bullmore, 2007). In schizophrenia,
such small-world features were also altered regarding functional
connectivity in EEG and fMRI (Micheloyannis et al., 2006; Skudlarski
etal,, 2010) and structural connectivity using diffusion tensor imaging
(vanden Heuvel et al,, 2010). Alzheimer's disease patients show a link
between highly-connected nodes in functional networks and high
amyloid-p deposition (Buckner et al., 2009) and abnormal small-
world functional connectivity both in EEG (Stam et al., 2007) and in
fMRI (He et al., 2008). Functional connectivity for epilepsy patients is
enhanced in EEG (Bettus et al., 2008) and shows altered modular
organization in MEG (Chavez et al., 2010) whereas DTI structural
connectivity showed reduced fractional anisotropy both adjacent to
and further apart from cortical lesions in patients with partial
intractable epilepsy (Dumas de la Roque et al.,, 2004). For healthy
subjects, the number of steps to go from one node in the fMRI
functional network to another was linked to the IQ of that subject (van
den Heuvel et al., 2009).

Network analysis techniques can be applied to the analysis of brain
connectivity and we will discuss structural connectivity as an
example. Using neuroanatomical or neuroimaging techniques, it can
be tested which nodes of a network are connected, i.e. whether
projections in one or both directions exist between a pair of nodes
(Fig. 1A). How can information about brain connectivity be repre-
sented? If a projection between two nodes is found, the value ‘1’ is
entered in the adjacency matrix; the value ‘0’ defines absent
connections or cases where the existence of connections was not
tested (Fig. 1B). The memory demands for storing the matrix can be
prohibitive for large networks as N? elements are stored for a network
of N nodes. As most neuronal networks are sparse, storing only
information about existing edges can save storage space. Using a list of
edges, the adjacency list (Fig. 1C), stores each edge in one row listing
the source node, the target node, and-for networks with variable
connection weight-the strength of a connection.

In this tutorial, we will neither focus on listing tools for network
analysis (Costa et al., 2007b) such as the Brain Connectivity Toolbox
nor review connectome analysis results (Bullmore and Sporns, 2009;
Sporns et al., 2004). Instead, we will introduce concepts of network
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Fig. 1. Representations of networks. (A) Directed graph with two directed edges or arcs
(A—C and D—C), and one undirected edge being equivalent to a pair of directed edges
in both directions (B«—C). (B) The same graph can be represented in a computer using
an adjacency matrix where a value of 1 denotes the existence of an edge and 0 the
absence of an edge. In this example, rows show outgoing connections of a node and
columns show incoming connections. (C) Sparse matrices (few edges) can also be
represented as adjacency lists to save memory. Each edge is represented by the source
node, the target node, and the weight of the edge (here: uniform value of 1).
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analysis to new researchers in the field of brain connectivity. A
previous article (Rubinov and Sporns, 2010) provided a classification
and discussion of topological network measures relevant to neuro-
science. The tutorial here will cover features of the topological but also
the spatial organization of neural systems. The spatial location of
neurons or regions in three dimensions and the delays for transmit-
ting information over a distance are properties unlike those found in
many network models. However, spatial networks with delays for
propagation are frequent in real-world artificial and social networks,
for example, for epidemic spreading (Hufnagel et al., 2004; Marcelino
and Kaiser, 2009; May and Lloyd, 2001), transportation networks
(Guimera and Amaral, 2004; Kaiser and Hilgetag, 2004b), or the
Internet (Vazquez et al., 2002; Waxman, 1988; Yook et al., 2002). We
discuss the benefits and limits of individual analysis methods. In
addition, we will show how to interpret measurements and outline
the common pitfalls and misconceptions in the field. This review, for
the first time, also introduces the concepts of single node motifs
extending notions of hub nodes and provides a classification of cluster
detection algorithms. We divide this review into six parts: (remainder
of this section) yielding brain networks and the role of node and edge
definitions, (section 2) features of individual nodes, (section 3)
features of whole networks, (section 4) groups within networks,
(section 5) types of networks, and (section 6) network features.

Terms, which are also defined in the glossary at the end, are set in
italics.

1.1. Workflow for brain connectivity analysis

How can one get information about brain connectivity between
regions, the macroscopic connectome (Akil et al., 2011)? The classical
way to find out about structural connectivity is to inject dyes into a
brain region. The dye is then taken up by dendrites and cell bodies and
travels within a neuron either in an anterograde (from soma to
synapse) or a retrograde (from synapse to soma) direction. Typical
dyes are horseradish peroxidase (HRP), fluorescent microspheres,
Phaseolus vulgaris-leucoagglutinin (PHA-L) method, Fluoro-Gold,
Cholera B-toxin, Dil, and tritiated amino acids. Allowing some time
for the tracers to travel, which could be several weeks for the large
human brain, the neural tissue can be sliced up and dyes can indicate
the origin and target of cortical fiber tracts. Whereas this approach
yields high-resolution information about structural connectivity it is
an invasive technique usually unsuitable for human subjects (how-
ever, there are some post-mortem studies). In the following, we will
therefore present non-invasive neuroimaging solutions to yield
structural and functional connectivity.

Fig. 2. Workflow for structural and functional connectivity analysis. High-resolution anatomical MRI scans of each subject are used as references for further measurements (1). For
establishing functional connectivity, a time series of brain activity in different voxels or regions can be derived (3). The correlation between the time series of different voxels or,
using aggregated measures, brain regions can be detected and represented as a correlation matrix (5). This matrix can either directly be interpreted as a weighted network (6) or it
can be binarized in that only values above a threshold lead to a network connection (7). For establishing structural connectivity, diffusion tensor imaging or diffusion spectrum
imaging can be applied (2). Using deterministic tracking, for example, the number of streamlines between brain regions can be represented in a matrix (4). This weighted matrix can
either be analyzed directly (6) or be thresholded so that connections are only formed if a minimum number of streamlines has been reached (7).
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The workflow for yielding human connectivity data starts with
anatomical magnetic resonance imaging (MRI) scans with high
resolution (Fig. 2). These scans are later used to register the location
of brain regions. For establishing functional connectivity, a time series
of brain activity in different voxels or regions can be derived. The
correlation between the time series of different voxels or, using
aggregated measures, brain regions can be detected and represented
as a correlation matrix (value ranging from — 1 to 1). This matrix can
either directly be interpreted as a weighted network or it can be
transformed into a binary matrix in that only values above a threshold
lead to a network connection.

For establishing structural connectivity, diffusion tensor imaging
(DTI) or diffusion spectrum imaging (DSI) can be applied. Using
deterministic tracking, for example, the number of streamlines
between brain regions can be represented in a matrix. For probabi-
listic tracking, matrix elements would represent the probability to
reach a target node starting from a source node. In both cases, the
weighted matrix can either be analyzed directly or it can be
thresholded so that connections are only formed if a minimum
number of streamlines or a minimum probability has been reached.

1.2. Role of node and edge definitions

The choice of nodes and edges can be influenced by the anatomical
parcellation schemes and measures for determining connectivity
(Rubinov and Sporns, 2010). This choice must be carefully considered
as different choices might not only change the topology by removing
or adding a few nodes or connections but also might alter the local and
global network features that will be discussed in the following
sections.

Parcellations of the brain into different nodes should be (a) non-
overlapping in that each brain location only belongs to one region,
(b) should assign tissue to one node that has similar connections to
other parts of the brain, and (c) should only be compared with other
networks that use the same parcellation scheme; this is also crucial
for comparing structural and functional connectivity in the same
subject (Honey et al., 2009).

Connections of a network can be binarized or weighted. Binary
connections only report the absence or presence of a connection.
Weighted links can also show the strength of a connection. For
structural connectivity, weights can indicate the number of fibers
between brain regions (e.g. the streamline count of deterministic
tracking), the degree of myelination, the probability that a node can be
reached from another node (e.g. probabilistic tracking), or the amount
of dye traveling from one node to another (traditional tract-tracing
studies). For functional connectivity, weights can indicate the correla-
tion in the time course of signals of different nodes. For effective
connectivity, weighted links represent causal relationships between
nodes. Weighted networks can be converted to binarized networks
using a threshold in that connections are only established if the weight is
above a threshold. Using binarized networks simplifies the calculation
and interpretation of many network measures (we focus on binarized
networks for this tutorial). On the other hand, the choice of a threshold
can be problematic: Using the same threshold can lead to a different
number of edges in different networks; on the other hand, comparing
binarized networks with the same number of edges means that a
different threshold may be used for each network (van Wijket al.,2010).
For binarized networks, it therefore has to be noted for which range of
thresholds a phenomenon can be observed. In all cases, loops
(connections of a node to itself) and negative weights must be removed
prior to applying network measures.

2. Local scale — single node features

Networks can be characterized at different levels ranging from
properties characterizing a whole network at the global scale to

properties of network components at the local scale. Starting from the
local scale, components of a network are its nodes and edges. Edges
can be weighted, taking continuous (metric) or discrete (ordinal)
values indicating the strength of a connection. Alternatively, they
could just have binary values with zero for absent and one for existing
connections.

Thinking about neural systems, there could also be multiple edges
between two nodes, e.g. a fiber bundle connecting two brain regions.
However, such multi-graph networks are usually simplified in that the
number of fibers is either neglected (binary values) or included in the
strength of a connection. In addition to fiber count, one might also
think of other properties of connections such as delays for signal
propagation or degree of myelination. Whereas such properties likely
have significant impact on network function, they are currently not
part of the analysis of network topology.

The other component at the local scale is a network node. A node
could be a single neuron but, as for edges, could also be an aggregate
unit of neurons such as a population or a brain area. The degree of a
node is the sum of its incoming (afferent) and outgoing (efferent)
connections. The number of afferent and efferent connections is also
called the in-degree and out-degree, respectively. When k; denotes the
degree of the node i of a network with N nodes, the series (ki,..., ky)
with increasing degrees (k;<k; ; 1) is called the degree sequence of the
network. Nodes with a high number of connections, i.e. a large degree,
are called network hubs. For structural and effective connectivity, the
ratio between the in- and out-degree of a node can give information
about its function: nodes with predominantly incoming connections
can be seen as integrators (convergence) whereas nodes with mainly
outgoing connections can be seen as distributors (divergence) or
broadcasters of information. These distinctions can be useful when
nodes are otherwise similar, e.g. distinguishing different types of
network hubs (Sporns et al., 2007).

For undirected networks, every connection between nodes is bi-
directional (e.g. for functional networks measuring correlation). For
such networks, if a node A is connected to a node B with a bi-
directional link, this link is counted as one connection when
calculating the degree of the node. Likewise, it does not make sense
to distinguish in-degree and out-degree as they will have the same
values.

Local measures can also refer to the neighborhood of a node. All
nodes that directly project to a node or directly receive projections
from that node are called neighbors of that node. The connectivity
between neighbors is used to assess local clustering. The ratio of the
number of existing edges between neighbors and the number of
potential connections between neighbors forms the local clustering
coefficient (Fig. 3A); a measure of neighborhood connectivity.

Fig. 3. Local and global measures. (A) Local clustering coefficient: All nodes that are
connected with node A are neighbors of that node. The local clustering coefficient of
node A is the number of connections between neighbors (green edges) divided by the
number of all potential connections between its neighbors. In this case, the local
clustering coefficient is C4=4/10=0.4 meaning that 40% of connections between
neighbors exist. (B) Shortest paths: The shortest path is the path between two nodes
with the lowest-possible number of connections in the path. The path length of that
path is the number of connections that needs to be crossed to go from one node to
another. In this example, the length of the shortest path between nodes A and C
(A—B—C) is 2 and the length of the shortest path between nodes A and E (A—E) is 1.
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The local clustering coefficient for an individual node i with k;
neighbors (node degree k;) and I'; edges between its neighbors is

_ T
= ki(k—1)"

However, this formula is basically not defined if the number of
neighbors k; becomes zero or one as the denominator becomes zero
(Costa et al.,, 2007b). These cases are usually treated as C; = 0 although
some authors also set these values to one (Brandes and Erlebach,
2005). Whereas having nodes with no connections (isolated nodes) or
only one connection (leaf nodes) is unlikely for structural connectiv-
ity, such nodes might occur for functional and effective connectivity.
We will discuss some ways to deal with such nodes when describing
aggregate measures.

Another local measure of a single node is how many shortest
paths (Fig. 3B) are containing that node. The shortest path between
two nodes is the length of the path with the lowest-possible
number of connections. For counting how many paths pass through
a node, the shortest paths between all pairs of nodes are calculated.
It is then counted how many shortest paths include a certain node.
Note that this measure is listed as a local measure as it is an
attribute of a single node even though information of the whole
network is used to calculate this measure. For comparing this
measure for two nodes of the same network, it does not matter
whether the absolute number of shortest paths containing one node
(stress centrality) or the relative frequency of how often that node
is part of shortest paths (betweenness centrality) is taken. This
measure of how frequently a node is part of shortest paths is called
node betweenness. In a similar way, frequency of shortest paths
containing a certain edge is the edge betweenness of that edge.
There are numerous kinds of centrality (Chapter 3, Brandes and
Erlebach, 2005) in addition to measures of how many shortest
paths run through network components. Other node centrality
measures include, for example, closeness centrality, which is the
reciprocal of the total distance of a node to any other node of the
network, and degree centrality, which is simply the degree of a
node.

3. Global scale — aggregate measures

We are now zooming out of a network and observe properties that
characterize the network as a whole, leaving out the intermediate
regional scale for a moment. Whereas local measures look at
properties of individual components, say the primary visual area V1,
global measures at the macroscale look at the whole network. This is
useful when comparing a given neural network with artificially
generated networks called benchmark networks. It is also useful
when comparing neural networks from different species or the same
species at different levels of organization (area, column, layer). In
these cases, the number of nodes and edges as well as their identity
(e.g. comparing networks that contain V1 with networks that do not)
might differ; however, aggregate measures can still be used to detect
changes at the macroscale.

The edge density, sometimes called connectivity, of a network is the
proportion of connections that exists relative to the number of potential
connections of a network. For a directed network with N nodes, each
node can connect to at most N— 1 other nodes. Therefore, the edge
density of a network with E edges and N nodes is d =E/(N (N—1)). For
an undirected network, the edge density becomes d=E/(2 N (N—1));
note the factor 2 in the denominator so that any potential undirected
edge between two nodes is only counted once and not twice. An edge
density of 1, corresponding to a percentage of 100%, would mean that all
potential edges exist. In biological networks, however, only a small
fraction of potential connections occurs. For the cortico-cortical fiber
tract connectivity of the mammalian brain, for example, the edge

density ranges between 10 and 30%. For the connectivity between
neurons in the nematode C. elegans, the edge density is 3.85%.

The edge density gives a first indication how well-connected a
network is. However, the time it takes to go from one node to another
might still vary considerably depending on the topology of the
network. A measure of traveling through a network is the number of
connections one has to cross, on average, to go from one node to
another. Formally, this average shortest path (ASP) of a network with N
nodes is the average number of edges that has to be crossed on the
shortest path from any one node to another:

ASP = N(N 1)Zd(1]) with i # j

where d(i, j) is the length of the shortest path between nodes i and j
having as few connections between nodes i and j as possible. Note that
the definition for the characteristic path length L is slightly different
(Watts, 1999) in that for each node the average shortest path length
to any other node is calculated and the median, instead of the mean,
value over all nodes is returned as L.

In practice, in particular for networks with directed edges, there
might be several pairs of nodes for which no path exists. In such
cases, graph theory would demand setting the distance d(i,)
between the two nodes to infinity. However, having only one such
pair in a network would give an ASP of infinity as well. In practice,
such infinite values are excluded that means the average shortest
path only takes the average of existing shortest paths between pairs
of nodes. Alternatively, a measure called global efficiency can be used
(Achard and Bullmore, 2007; Latora and Marchiori, 2001). Global
efficiency uses a sum of the inverse of the distance L so that non-
existing paths, leading to infinite distance, contribute a zero value to
the sum:

1
Eglobal ( ) g L_

where L;; is the length of the shortest path between nodes i and j and
N is the number of nodes.

Another aggregate measure based on the local features of
individual nodes is average neighborhood connectivity — the (global)
clustering coefficient. The clustering coefficient is just the average of
the local clustering coefficient C; of all nodes:

1
C] = NZCI
Alternatively, a more widely used definition of the clustering
coefficient (Newman et al., 2001) is

C —Zl"
27 X deg;(degi—1)

Note that the first definition C; runs into problems if one node's
local clustering coefficient is undefined (see previous section). A third
definition is to describe the clustering coefficient using inverse
neighborhood clustering analogous to using inverse shortest path
lengths for defining efficiency. Such a measure of (neighborhood)
disconnectedness D could be defined as (Kaiser, 2008):

D= %ZDI- with D; =1/C = degi( ?_egi”)
1
and D;=0 for I;=0.

In relation to the characteristic path length as global efficiency
(how well are any two nodes of a network connected), the clustering
coefficient can also be called local efficiency (how well are neighbors
of a node connected) (Achard and Bullmore, 2007; Latora and
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Marchiori, 2001). The clustering coefficient (C; or C3) will increase
whenever the edge density increases as a higher probability that any
two nodes are connected also means that connections between
neighbors are more likely. Therefore, comparing clustering coeffi-
cients for networks with different edge densities should either be
avoided or they should use a normalized coefficient. Such a
normalized coefficient would be the clustering coefficient relative to
the clustering coefficient of a random network (the clustering
coefficient of a random network is the same as the edge density of
the original network). However, normalization does not work if one of
the two networks has a much higher edge density: whereas the
clustering coefficient of a network with low edge density can be 2-3
times as high as the edge density of that network, the clustering
coefficient of a network with, say 60% edge density, can never be 2-3
times as high as the edge density.

4. Regional scale — groups of network nodes

Often, we are interested in an intermediate level of organization
going beyond single nodes but not including the whole network. At
this scale, we can observe measures for subsets of nodes which share
similar connections, e.g. dealing with visual input. Such measures look
at the sets of nodes where the connectivity within the set is larger
than between the set of nodes and the rest of the network. Such sets of
nodes are called clusters, modules, or, following social network
analysis, communities.

4.1. Clusters

Clusters or modules are parts of a network with many connections
(high edge density) within such a part and few connections (low edge
density) to the remaining nodes of the network. There are many
different algorithms to detect clusters of a network (Girvan and
Newman, 2002; Hilgetag et al., 2000b; Palla et al., 2005). As a general
rule, algorithms can be distinguished along three features (many
other classifications exist). First, algorithms could lead to hierarchical
or non-hierarchical solutions. Non-hierarchical solutions just identify
different modules that can be displayed in a reordered adjacency
matrix or in a circular graph (Fig. 3A). Hierarchical solutions not only
identify modules but also sub-modules within modules, sub-sub-
modules within sub-modules, and so on (Clauset et al., 2008). That
means that the modular organization at different hierarchical levels
can be observed. Instead of distinct levels, the parcellations into sub-
modules can also be shown in form of a dendrogram — a tree where
nodes in the same cluster are part of the same branch of the tree
(Fig. 3B). Note that the hierarchical parcellation of the network
critically depends on the threshold that one chooses. Whereas an
early threshold, near the root of the tree, might only show the main
clusters — just one hierarchical level, a late threshold, close to the leafs
of the tree, might result in numerous sub-clusters that are so small
that the distinction between clusters becomes weak. Second,
algorithms can use a predefined number of clusters which need to
be detected or can determine the number of clusters themselves. If the
number of clusters is known, algorithms similar to k-means, where k
is the number of clusters, can be used to detect the clusters. However,
in many biological applications, the number of clusters is not known
beforehand, and algorithms that determine the number during the
clustering process are needed. Third, algorithms can lead to over-
lapping or non-overlapping cluster-classifications of nodes. For non-
overlapping algorithms, a node will belong to one and only one cluster
of the network. However, this assignment to a cluster can often be
ambiguous with only a slightly lower preference for assigning the
node to another cluster. For overlapping algorithms, a node can
belong to several clusters with different likelihoods. Say a node could
belong to clusters A, B, and C with likelihoods of 20%, 30%, and 50%,
respectively. Such overlapping cluster memberships for cortical nodes

can point to nodes that integrate information from several modules,
e.g. from the visual and auditory system.

Here, we just show an example of a non-hierarchical, non-
overlapping algorithm where the number of clusters is not known
beforehand. To identify clusters, an evolutionary optimization
algorithm can be used (Hilgetag et al, 2000b). This approach is
based on the goal that areas should be more frequently linked to areas
in the same cluster than to areas in different clusters. To achieve this
goal, Hilgetag et al. defined a two-component cost function C whose
weighted sum was minimized:

C = Wyr X Carer + Wrep X Crep-

The components were C,, (attraction component), the number of
connections existing between clusters, and Cr¢p, (repulsion component),
the number of absent connections within clusters, with w ¢ and wyep, as
weights for adjusting the influence of each component, respectively
(Hilgetag et al., 2000a). The first component can be considered as
attracting connections to clusters, as it becomes minimal if no
connections between clusters exist. Minimizing the second component,
on the other hand, tends to break up clusters, as it can be reduced to zero
by an arrangement that consists of completely separate areas (Hilgetag
et al., 2000a). Only minimizing both components simultaneously will
result in dense connectivity within clusters and few connections
between clusters.

As an example, this method can be used for the analysis of
structural connectivity using fiber tract data in the cat and the
macaque as tested for the primate visual, global primate cortical, and
global cat cortical network (Hilgetag et al., 2000a). For the cat
structural connectivity, based on invasive tract tracing studies, cortical
area groupings largely agreed with functional cortical subdivisions
(Hilgetag et al., 2000b): the four observed clusters consisted
predominantly of visual, auditory, somatosensory-motor, or fronto-
limbic areas, respectively. In addition, clusters of the primate visual
system corresponded closely to the dorsal and ventral visual streams.
In agreement with the idea that structural clusters correspond to
functional subdivisions, cluster analyses of semi-functional (neurono-
graphic) connections showed functional processing clusters with
broadly similar subdivisions (Stephan et al., 2000).

Fig. 4 shows an example of the modular organization of human
corticocortical connectivity, based on diffusion spectrum imaging
(Hagmann et al., 2008). Cortical areas were arranged around a circle
so that highly inter-linked areas were placed close to each other
(Fig. 4A). Note that nodes in the same cluster, having a high structural
similarity, also have a similar function. The cluster architecture of the
same network can also be represented by a dendrogram using
hierarchical clustering (Fig. 4B). A dendrogram running from the left
to the right consists of branches connecting objects in the tree. The
distance of the branching point on the x-axis is the rescaled distance
when clusters are combined.

This is only a brief overview of clustering but there are numerous
approaches for detecting network modules. For example, clusters
cannot only be defined by grouping nodes but also by grouping edges
into link communities (Ahn et al., 2010).

4.2. Modularity

A measure that has received a lot of attention for topological clusters
inrecent times is modularity. Modularity (Q) is a reflection of the natural
segregation within a network (Newman, 2004) and can be a valuable
tool in identifying the functional blocks within. Similar to the measure C
discussed in the previous sub-section, Q can be used to assess how well a
parcellation into non-overlapping modules represents the modular
architecture of a network. Given two parcellations into distinct modules
for the same network, the parcellation with the higher value of Q would
be preferred. So how can the modularity Q be computed? Given a
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Fig. 4. Clusters. (A) Cluster structure of human cortico-cortical connectivity, based on Hagmann et al.(2008). Cortical areas were arranged around a circle by evolutionary
optimization, so that highly inter-linked areas were placed close to each other. Note that nodes in the same cluster, having a high structural similarity, also have a similar function.
(B) Dendrogram of the same network using hierarchical clustering. A dendrogram running from the root to the leafs (here: from left to the right) consists of branches connecting
objects in the tree. The distance of the branching point on the x-axis is the rescaled distance when clusters are combined.

parcellation that assigns to each node i a label ¢; identifying to which
module the node belongs to, the modularity Q is the difference between
the number of edges that lie within a community in the actual network
and a random network of the same degree sequence. A high level of
topological clustering is reflected in a high value of modularity. The
modularity for a directed network is given by (Newman, 2006):

1 kimgeout
Q=_2 {aﬁ_% 86i,ci

m-jj

where m: total number of edges in the network (note that
bidirectional links are counted twice); a;: element of adjacency
matrix; ki": in-degree of node i; kP“‘: out-degree of node j; écic;:
Kronecker delta (only one if nodes i and j are in the same module and
zero otherwise); c,: label of module to which node n belongs to.

This measure can be used as a cost function in cluster algorithms
where the aim is to maximize the modularity function Q. As for other
optimization problems, a range of methods can be used such as
genetic algorithms (see previous section), simulated annealing, etc.
Note that the modularity measure shows how well a given separation
into modules performs. It does not include information about how
many modules exist or about their size or overlap (see previous
section about clusters on these problems). Using this modularity
measure Q also has disadvantages such as limited resolution and a
bias towards certain cluster sizes.

Note that this measure differs from the cost function C where the
weights War and wrp need to be adjusted, in addition to the testing of
different cluster membership configurations, to yield a good solution
for a particular network. Using the notation of Newman (2006), the
cost function C can be re-written as:

C =Wy %; a; (1 —8Ci_51> + Wiep % (1 —aij> Bc,c;-

4.3. Network motifs

Modules are relatively large structures comprised of tens or
hundreds of nodes. Modules are often linked to function in that nodes
of the same module tend to have a similar function. However, there
could also be smaller subgraphs with only a few nodes that could have
a specific function for a network. For a subgraph with only two nodes
A and B, there are three ways of how directed edges could exist
between them: a connection in one direction, A—B; a connection in
the reverse direction, A«<B; and a bidirectional connection, A—B. For
sub-graph counting, the case that no connections between the nodes
exist is not taken into account. Also, the identity of the nodes is not
retained; therefore, A—>B and A<B are treated as one pattern. For
three nodes, there are already 13 different patterns how directed
edges could be distributed (Fig. 5A). For a real-world network it is
then possible to count how often each potential 2-node or 3-node
pattern occurs. If a pattern occurs significantly more often than in a
randomly organized network with the same degree distribution, it is
called a network motif. Dubbed the “building blocks” of complex
networks, network motifs mimic the concept of sequence motifs as used
in genomics. In a gene sequence, a motif is a recurring subsequence, a
pattern that is conjectured to have some functional significance. In a
network, a motif is a recurring sub-network conjectured to have some
significance.

So when does a pattern occur significantly more often than would be
expected for a random organization? To decide this, a set of benchmark
networks is generated where the number of nodes and edges is identical
but, starting from the original network, edges are rewired while each
node maintains its original in-degree and out-degree. Thus, the degree
distribution of the network remains unchanged. This means that each
node still has the same degree after the rewiring procedure but that
additional information, e.g. the cluster architecture, is lost. In the next
step, for each benchmark network the number of occurrences of a
pattern is determined. Then, the pattern count of the real-world
network can be compared with the average pattern count of the
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Fig. 5. Network motifs. (A) Overview of all 13 possible ways to connect three nodes (three nodes without connections are not considered). (B) Three-node patterns that occur
significantly more often in the human (Iturria-Medina et al., 2008), macaque, cat, and C. elegans structural connectivity than in rewired networks and are thus network motifs

(adapted from Milo et al.(2002); ID's refer to the numbers in (A)).

benchmark networks; patterns that occur significantly more oftenin the
real-world network than in the benchmark networks are called network
motifs.

The seminal paper by Milo et al.(2002) gave origin to a multitude of
definitions and studies. Network motifs have since been used in the
most varied areas. The concept has been applied to networks in domains
like protein-protein interactions (PPI) (Alon, 2003; Wuchty et al.,
2003), gene transcriptional regulation, food webs, and neural systems
(Milo et al., 2002; Sporns and Koétter, 2004). Implementations of
motif discovery tools include the original mfinder routine (http://www.
weizmann.ac.il/mcb/UriAlon/groupNetworkMotifSW.html), the faster
FANMOD routine (http://theinfl.informatik.uni-jena.de/~wernicke/
motifs/index.html (Wernicke and Rasche, 2006)), and a Matlab
implementation (http://www.brain-connectivity-toolbox.net/). Fig. 5A
shows all possible patterns for three nodes and Fig. 5B shows
characteristic network motifs of size 3 for different neural networks
(Milo et al., 2002).

Finding these motifs is a computationally hard problem, because
fundamentally we match graph patterns with the desired patterns,
which leads to the well-known problem of graph isomorphism, with
no polynomial time algorithm known (see Table A1l: Runtime
complexity). As the size of the motifs gets bigger, the time needed
to calculate grows exponentially. Hence, an exhaustive computation
of all motifs of a network is typically reduced to very small sizes in
order to obtain results in a reasonable amount of time (see (Ribeiro
et al., 2009) for a survey of motif detection strategies).

In addition to computational challenges, there are also conceptual
problems with motif analysis. The benchmark for counting the number
of motifs is a rewired network with the same degree distribution. Even if
the degree distribution remains identical, random rewiring removes the
topological cluster architecture of the real network that often relates to
the underlying spatial clustering of nodes. Taking into account the
modular organization and using a rewiring that maintains both the
degree distribution and the topological cluster architecture leads to a
lower number of network motifs. This occurs as many motifs, such as
highly-connected three- or four-node motifs, are frequent when
densely connected modules exist. If the rewired network contains
such densely connected modules as well, those patterns do not occur
significantly more often in the original network. Therefore, only few
motifs for the networks considered in Sporns and Kétter(2004) remain
(Kaiser, unpublished). The same is true for a network with regular
connectivity, but without multiple modules: its neighborhood connec-
tivity measured through the clustering coefficient is higher than for the
rewired network and thus patterns with dense connectivity arise as
network motifs. This is just one example how different features of a

network can be strongly correlated. Other examples are the positive
correlations between a node degree and its node betweenness, the edge
density and the clustering coefficient of a network, and the edge density
and the characteristic path length. As mentioned earlier, when
comparing networks it is crucial that differences between networks in
one network, say the clustering coefficient, are not just caused by
differences in another feature, say edge density.

Another problem in applying motif analysis to brain connectivity is
that many structural and functional networks yielded by diffusion
imaging or time series correlations, respectively, are undirected. For
such networks, the number of patterns and therefore potential motifs
is significantly reduced: observing 3-node patterns yields 13 potential
motifs for directed networks (Fig. 5A) but only 3 for undirected
networks. This renders motifs less meaningful for undirected
networks; however, measurements yielding directed networks
might become available in the future.

Network motifs can give information about characteristic patterns
of multiple nodes but what about individual nodes that are special for
a network? Although a measure for a single node would normally be
part of the local scale, we discuss this concept here as it is closely
related to multiple-node motifs. Certain singular node-motifs, such as
highly connected nodes or hubs, affect spreading phenomena, which
makes them important components of the network. More complex
compound singular node motifs, which are characterized by multiple
features in combination, specify nodes more comprehensively. With
this more precise description new kinds of motifs can be formulated
(Costa et al., 2009). The algorithm first identifies outlier nodes with
features that are significantly different from other nodes in the
network. Next, those outlier nodes can be classified into different
classes based on their individual features. Finally, the number of nodes
that were found for each class gives a fingerprint that is characteristic
for each network. As the method does not rely on adjustable
parameters, it can be automatically applied to a large number of
networks (Echtermeyer et al., 2011). Implementations of this method
are available and provide both a graphical user interface and a
command line version for batch processing (http://www.biological-
networks.org/).

5. Types of networks

We already mentioned that network measures can be used to
compare networks with each other. Often, we are not only interested
in how network measures differ but also whether the type of network
differs. Although each neural network has a unique topological and
spatial organization, such types or classes of networks can be used for
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Fig. 6. Types of networks. Networks contain 24 nodes and 142 edges. The top panel shows individual networks where nodes are located on a circle. The bottom panel shows the
average probability over 100 networks to display a connection in the adjacency matrix: white denotes edges that are always absent whereas black shows edges that are always
present. (A) Erdos-Rényi random network. (B) Scale-free network with dark edges (top) indicating highly connected nodes or hubs. (C) Regular or lattice network with high
connectivity between neighbors. (D) Small-world network with blue edges (top) representing short-cuts of the network. Note that for the average probability plot (bottom), short-
cuts are invisible due the averaging over 100 networks. (E) Modular network with two modules. (F) Hierarchical network with two modules consisting of two sub-modules each.

Thus, there are two hierarchical levels of organization.

classification and comparison (Fig. 6). Such classes are based on global
features of the degree distribution and the community organization.
The following section shows different types and their characteristic
properties. Note that real-world networks, however, might show a
combination of different classes, e.g. being modular and small-world.

5.1. Random networks

Whereas many networks are generated by a random process, the
term random network normally refers to the type of Erdos-Rényi
random networks (Erdés and Rényi, 1960). Random networks are
generated by establishing each potential connection between nodes
with a probability p. This probability, for a sufficiently large network,
is then equivalent to the edge density of the network; i.e. the
connection density. The process of establishing connections re-
sembles flipping a coin where an edge is established with probability
p and not established with probability q=1—p. Therefore, the
distribution of node-degrees follows a binomial probability distribu-
tion. For large numbers of nodes, the probability P(k) that a node has k
connections can be approximated by a Poisson distribution, and hence

>
w

the term ‘exponential degree distribution’ is also used (Bollobas,
1985). The distribution can be shown as a histogram where the counts
for the different bins are plotted as data points. For the “exponential”
degree distribution, P(k)~e~k of a random network, points are
arranged on a line for a logarithmic plot of log(P(k)).

5.2. Scale-free networks

Scale-free networks are characterized by their specific distribution of
node degrees. The degree distribution follows a power law where the
probability that a node with degree k exists, or the frequency of
occurrences for real-world networks, is given by P(k)~k™". This is
different from the random networks discussed above where the degree
distribution follows an exponential distribution, P(k)~e . The expo-
nent -y of a power-law degree distribution can vary depending on the
network which is studied. For example, for functional connectivity
between voxels in human MRI, 'y was found to be 2.0 (Eguiluz et al.,
2005) whereas y was 1.3 for functional connectivity of neurons in the
hippocampus determined through calcium imaging (Bonifazi et al.,
2009).
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Fig. 7. Scale-free networks. (A) Scale-free networks contain highly-connected nodes or hubs (shown in red). (B) Degree distribution of a scale-free network with 10,000 nodes and
20,145 connections. In contrast to random networks with one characteristic scale where all node degrees k are close to the average, scale-free networks can contain nodes with
degrees that are several standard deviations away from the average. In this example, there are 13 nodes with degrees that are nine standard deviations away from the average degree
of 4 (arrows); the maximum degree is 504 (beyond the figure axes). (C) The cumulative frequency P(k) that a node with degree k occurs in the network follows a power-law leading

to a straight line in a bi-logarithmic plot.
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Data points for a power-law degree distribution lie on a straight line
for a log-log plot of log(P(k)) against log(k). To test this power-law
relationship, the cumulative distribution P.(k) =P(X>k)=1—F(k)
with F(k) =P(X<k) where X is the number of connections of a node
is plotted (Fig. 7C). As the histogram uses the same bin widths, the bins
for high-degrees have fewer entries than the bins for nodes with low
degree values. Therefore, data points in the histogram will fluctuate
more strongly for the tail of the distribution. In addition to the visual
inspection of the log-log plot, a statistical analysis is needed to test for a
power-law behavior (Clauset et al, 2009). Such an analysis will
determine the goodness-of-fit with a power-law distribution and will
also compare this result with alternative hypotheses (e.g. exponential or
Yule distributions).

There are two potential problems with determining whether a
network shows a power-law degree distribution and is thus scale-
free: One problem arises when only part of the network is known. For
example, one might like to test scale-free properties of neuronal
networks but only has connectivity within one column but not with
other parts of the brain. In this case, connectivity is only known for a
subset or sample of the nodes of the whole network. Using such
incomplete sampling, is it still possible to test whether the whole
network is scale-free or not? Unfortunately, the amount of unknown
or not included connections or nodes might change the shape of the
degree distribution (Stumpf et al., 2005); in particular missing nodes
could mean that the rarely occurring hubs are not part of the sample
resulting in classifying a scale-free network as an Erdds-Rényi
random network.

Another problem is networks with a low number of nodes, where
the degree distribution only consists of one or two orders of
magnitude. Unfortunately, this is the case for regional brain
connectivity where networks consist of 100 or less nodes: Structural
networks in the macaque, cat, and human within one hemisphere
usually consist of around 30-100 nodes. Such a low number of nodes
results in power-law fits that are not robust. For such networks,
individual outlier nodes with very high connectivity might directly
alter the tail of the degree distribution, whereas for larger networks
the degrees of several nodes will be binned so that outliers are less
influential. However, we can test for scale-free behavior by using
indirect measures whose outcome is not altered significantly by one
individual node (Kaiser et al., 2007b).

5.2.1. Case-study: are neural networks scale-free?

Previous studies have shown that functional networks of the
human brain, looking at signal correlations between voxels in fMRI,
are scale-free (Eguiluz et al., 2005). However, at the gross level of
signal correlations between brain regions, it was argued that these
functional networks are not scale-free (Achard et al., 2006). We have
compared the structural network between cat and macaque brain
regions with different types of benchmark networks, including
random, scale-free and small-world networks, and found strong
indications that the brain connectivity networks share some of their
structural properties with scale-free networks. In particular, we
compared the effect that the removal of nodes and connections had
on the ASP found in the brain connectivity networks and their
benchmark counterparts (Kaiser et al., 2007b). So even though the
degree distribution cannot be tested, the robustness after simulated
lesions is most similar to that of a scale-free network. However, this
does not necessarily mean that cortical networks show a power-law
degree distribution. Indeed, the structural connectivity is unlikely to
be scale-free over more than one order of magnitude. Still, cortical
networks contain highly-connected nodes that are unlikely to occur in
random networks with the same number of nodes and edges (Kaiser
et al, 2007b). These hubs might be the underlying reason for the
lesion robustness that was comparable to scale-free networks as
described above.

If neural networks show more highly-connected nodes than for
random benchmark networks, how could network features such as
hubs arise? There are several potential developmental mechanisms
that yield brain networks with highly connected nodes. Work in brain
evolution suggests that when new functional structures are formed by
specialization of phylogenetically older parts, the new structures
largely inherit the connectivity pattern of the parent structure
(Ebbesson, 1980). This means that the patterns are repeated and
small modifications are added during the evolutionary steps that can
arise by duplication of existing areas (Krubitzer and Kahn, 2003). Such
inheritance of connectivity by copying modules can lead to scale-free
metabolic systems (Ravasz et al., 2002). A developmental mechanism
for varying the node degree of regions could be the width of the
developmental time window for synaptogenesis at different regions
(Kaiser and Hilgetag, 2007; Nisbach and Kaiser, 2007). Indeed, C.
elegans neurons that are generated early during development tend to
accumulate more connections and tend to be hubs of the adult
network (Varier and Kaiser, 2011).

5.3. Small-world networks

Many networks exhibit properties of small-world networks
(Watts and Strogatz, 1998). The term small-world refers to experi-
ments in social networks by Stanley Milgram where a person could
reach any other person through a relatively short chain of acquain-
tances, the “six degrees of separation” (Milgram, 1967). However,
relatively short does not mean that the average number of
connections to cross from one node to another, the characteristic
path length, is minimal. Indeed, the path length is usually higher than
for Erdés-Rényi random networks with the same number of nodes
and edges. However, connectivity between node neighbors, the
clustering coefficient, is much higher than for random networks.

So when can a network be considered a small-world network?
Unfortunately, there is no clear criterion. In general, to classify a
network as small-world, its clustering coefficient should be much
higher than the clustering coefficient of Erdés-Rényi random
networks. For Erdos-Rényi random networks, the clustering coeffi-
cient has the same value as the edge density (connections between
neighbors are as likely as any other connections of the network) so
edge density might be used for the comparison. In addition, the
characteristic path length of the network should be comparable to
that of a random network that means slightly but not excessively
higher than that value.

A measure to summarize to what extent a network shows features
of a small-world network is small-worldness S= (C/Crana)/(L/Lrand)
where C is the clustering coefficient and L is the characteristic path
length of an observed network and a random network (Humphries
and Gurney, 2008). Note that this measure is useful for comparing
small-world networks but not sufficient for determining whether a
network is a small-world network or not: a high value of S might also
occur for networks with extremely high characteristic path length as
long as the clustering coefficient is much higher than for random
networks.

5.3.1. Case study: it's a small brain—small-world properties in neural
networks

Small-world properties were found on different organizational
levels of neural networks: from the tiny nematode C. elegans with
about 300 neurons (Watts and Strogatz, 1998) over cortical structural
connectivity of the cat and the macaque (Hilgetag et al., 2000a; Hilgetag
and Kaiser, 2004; Sporns et al., 2000) to human structural (Hagmann et
al., 2008) and functional (Achard et al., 2006) connectivity. Whereas the
clustering coefficient for the macaque structural connectivity is 49%
(16% in random networks), the characteristic path length is compara-
tively low with 2.2 (2.0 in random networks). Similarly, human
structural connectivity between brain regions shows small-world
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properties with a small-worldness S of 10.6 (Text S2, Hagmann et al.,
2008). For human functional connectivity between brain regions, the
clustering coefficient is 53% (22% in random networks) and the path
length 2.5 (2.3 in random networks) (Achard et al.,, 2006).

That is, on average only one or two intermediate areas are on the
shortest path between two areas. An anatomical basis for small-world
features in neural networks is the preference for local short-distance
connections with only few long-distance connections (Kaiser et al.,
2009). In that way, most neighbors of a node are nearby and therefore
have a higher probability to be connected (Kaiser and Hilgetag, 2004a,
b; Nisbach and Kaiser, 2007).

How can small-world networks arise during network develop-
ment? First, small-world networks, in a method described in the
original article (Watts and Strogatz, 1998), could start from a regular
(also called lattice) network where neighbors are well connected and
rewire connections of nodes by randomly varying the node to which
an edge connects to. In this way, edges that do not connect neighbors
but distant nodes in a network can be established; these edges are
thus called ‘short cuts’. If the probability that any edge will be rewired
becomes too high, the network turns into a random network. Second,
networks with small-world properties can be generated in the reverse
way starting with random networks and slowly establishing higher
neighborhood clustering (Kaiser, 2008). Such networks can contain
isolated nodes and leaf nodes (nodes with only one connection);
patterns which are unlikely to arise following the previous approach
of starting with regular networks. Third, networks could grow in two-
or three-dimensional spaces with a preference for new nodes to
connect to spatially nearby nodes. Such a spatial growth can, in certain
parameter regimes, lead to small-world networks (Kaiser and
Hilgetag, 2004a,b; Nisbach and Kaiser, 2007).

Note that a high clustering coefficient does not necessarily mean
that a network contains multiple clusters! Indeed, the standard model
for generating small-world networks by rewiring regular networks
(Watts and Strogatz, 1998) does not lead to multiple clusters. In
addition, small-world and scale-free properties are compatible, but
not equivalent; a network might be small-world but not scale-free
and vice versa.

5.4. Modular and hierarchical networks

Two central topological features of brain networks, in particular of
the cerebral cortex, are their modular and hierarchical organization.
Modular networks consist of multiple clusters (cf. Clusters section). If
these clusters occur at different levels, a cluster consisting of multiple
sub-clusters, sub-clusters consisting of several sub-sub-clusters, and
so on, the network can be called a hierarchical modular network. Note
that for only one level, the network would be modular but not
hierarchical. On the other hand, networks that are hierarchical but not
modular seem impossible.

A modular hierarchical organization of cortical architecture and
connections is apparent across many scales, from cellular microcir-
cuits in cortical columns (Binzegger et al., 2004; Mountcastle, 1997) at
the lowest level, via cortical areas at the intermediate scale, to clusters
of highly connected brain regions at the global systems level
(Breakspear and Stam, 2005; Hilgetag et al., 2000a; Kaiser et al.,
2007a). The precise organization of these features at each level is still
unknown, and there exists controversy about the exact organization
or existence of modules even at the level of cortical columns (Horton
and Adams, 2005; Rakic, 2008). Nonetheless, current data and
concepts suggest that at each level of neural organization clusters
arise, with denser connectivity within than between the modules.
This means that neurons within a column, area or cluster of areas are
more frequently linked with each other than with neurons in the rest
of the network.

Several potential biological mechanisms for generating hierarchi-
cal modular networks have been described. One way is to start with

an existing network and generate copies of duplicates of such a
network where the copies retain the same internal connectivity as the
original network but also establish connections directly to the original
networks. Variations of this method can be used to generate
hierarchical scale-free networks (Ravasz and Barabasi, 2003; Ravasz
etal.,, 2002) and were also thought to lead to cortical connectivity-like
networks (Ebbesson, 1980; Krubitzer and Kahn, 2003). For modular
networks, time windows during development can lead to multiple
clusters where the cluster number, cluster size, and inter-cluster-
connectivity is determined by the number, width and overlap of
developmental time windows for synaptogenesis (Kaiser and Hilgetag,
2007; Nisbach and Kaiser, 2007).

6. Space — the final frontier

The previous sections have looked at topological properties of
neural networks but brain networks also have spatial properties in
that each node and edge has a three-dimensional location and
extension may it be volume for nodes or diameter and trajectory for
edges. Given the spatial extent of network components, space is often
a limiting factor for the structural organization of neural systems. For
example, all-to-all connectivity between all neurons of the brain is
impossible given the limited volume available for white matter fiber
tracts within the skull. In addition to the feasibility of network
topologies, the actual wiring between nodes can also inform us about
functional constraints. For example, long-distance connections are
costly in that their establishment (material) and maintenance (action
potential propagation) uses energy. On the other hand, long-distance
connections can form short-cuts that lead to faster information
integration and, consequently, accelerated reaction time.

6.1. Connection lengths

Each node and edge in neural networks, at least after potential
migration during development, has a constant spatial position. Such a
spatial layout is far from random but to what extent self-organization
or genetic predisposition determines location is still an open question.
One first step in observing the spatial organization of a neural network
is to look at the lengths of connections. If two nodes are connected, the
Euclidean distance between the positions of both nodes can be a lower
bound of the length of the connection. Note, that even for cortical fiber
tracts this gives a reasonable approximation: for the prefrontal cortex
in the macaque only 15% of the connections are strongly curved and
dense fibers, in particular, tend to be completely straight (Hilgetag
and Barbas, 2006). It is often interesting to observe how many
connections go to nearby targets and how many extend over a long
distance, potentially linking different components of the neural
network. This can be readily observed using a histogram of the
connection lengths of a network. These histograms for anatomical
connection lengths, ranging from C. elegans and rat neuronal to
macaque and human cortical connectivity, all show a decay of the
frequency over distance: short-distance connections are more
frequent than long-distance connections (Fig. 8). For these systems,
the distribution can best be approximated through a Gamma
distribution (see (Kaiser et al., 2009) for details).

Establishing connections involves metabolic structural costs for
building connections (especially for myelinated axons) as well as
dynamic costs for transmitting action potentials. It is therefore natural
to assume that these energy costs should be as low as possible
(Cherniak, 1992; Chklovskii et al., 2002; Wen and Chklovskii, 2008).
One possibility for reducing costs is to have a lower number of long-
distance connections. The frequency of such long-distance connec-
tions, relative to short-distance connections, can be seen in the
connection length histogram. It can also be tested how far away the
combined length of all connections together, the total wiring length, is
from the shortest-possible total wiring length. Such an optimal
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Fig. 8. Connection lengths in cortical and neuronal networks. Connection length distributions where the relative counts of a histogram are plotted as data points (x) fitted with a
Gamma function (solid line, see Appendix A for fits and coefficients). For cortical networks, only connectivity within a hemisphere was considered. Despite different species, levels of
organization, and types of connectivity, all distributions show an early peak and a later distance-dependent decay in the frequency of connection. (A) Human diffusion tensor
imaging network between 55 brain regions where each existing fiber tract is represented by one (unweighted) network connection. (B) Human resting-state fMRI network between
55 brain regions where the top 20% of correlation are represented by a network connection (that means, the threshold was set so that the edge density was 20%). (C) Macaque
cortical fiber-tract network of 95 brain regions. (D) Rat supragranular pyramidal cell neuronal network of layers II and III of the extrastriate visual cortex. Subplots C and D are

adapted from Kaiser et al.(2009).

solution can be found in two ways: rearranging the connections of
each node whereas the position of a node remains the same or
rearranging the position of each node, swapping around the position
of nodes, while retaining the connectivity of each node projecting to
the same target nodes (not target positions).

Reducing the total length by reordering connections could lead to
minimal wiring of a system. One possibility would be to establish
connections ranked by their length; connecting nodes that are closest
to each other first. However, this could result in a fragmented network
where parts of the network are unreachable from many starting
nodes. To secure reachability, start with a minimum spanning tree (cf.
glossary in Appendix A) that connects N nodes with N — 1 edges and a
minimal wiring length (Cormen et al.,, 2009), then add remaining
connections again using short-distance connections as described
before.

Alternatively, wiring length reductions in neural systems can be
achieved by suitable spatial arrangement of the components. Under
these circumstances, the connectivity patterns of neurons or regions
remain unchanged maintaining their structural and functional
connectivity, but the layout of components is perfected such that it
leads to the most economical wiring. In the sense of this ‘component
placement optimization’ (CPO; (Cherniak, 1994)), any rearrangement
of the position of neural components, while keeping their connections
unchanged, would lead to an increase of total wiring length in the
network. However, studies on neuronal networks in C. elegans and on
cortical networks in the macaque have shown that a reduction by 30-
50% is possible (Kaiser and Hilgetag, 2006). For a small number of
nodes, all possible arrangements of their positions can be tested. For
larger networks, however, such an approach is not feasible: the
number of possible layouts for N nodes is N! (e.g. 1018 possibilities
for 95 nodes). In those cases, optimal solutions can only be
approximated through numerical routines such as simulated anneal-
ing (Metropolis et al., 1953) or others.

6.2. Missing links: using spatial and topological features for network
reconstruction

As for other biological systems, incomplete data sets are a problem
for brain connectivity studies. Are there ways to predict whether a
connection between two nodes exist? One possibility, tested for the
macaque fiber-tract and the C elegans neuronal network, is to use
local features of a pair of nodes to predict whether they are connected
or not (Costa et al., 2007a). Topological features were node degree,
clustering coefficient, characteristic path length, and Jaccard coeffi-
cient. Spatial or geometrical features included local density of nodes,
coefficient of variation of the nearest distances, Cartesian coordinates
of the nodes' center of mass, as well as the area size for nodes in the
cortical network. Such an approach gave good estimates for
reconstructing connections of the macaque visual cortex (Costa et
al.,, 2007a). The prediction performance could be further improved
through varying the contribution of each feature (training weights)
(Nepusz et al., 2008).

7. Conclusion

This tutorial is a first introduction to connectome analysis looking
at topological and spatial features of neural systems. There are several
aspects of the connectome that are not covered here such as
complexity (Tononi et al., 1994, 1996), divergence and convergence
of information (Tononi and Sporns, 2003), and the comparison of
types of connectivity (e.g. the link between structural and functional
connectivity (Honey et al., 2009)). For the hierarchical organization,
we only looked at topology but hierarchy also relates to the dynamics
and spatial organization of neural systems (Hutt and Lesne, 2009;
Jarvis et al., 2010; Kaiser and Hilgetag, 2010; Kiebel et al., 2009;
Krumnack et al., 2010; Meunier et al., 2009; Rodrigues and Costa,
2009; Zamora-Lopez et al., 2010). We also only observed a snapshot of
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the connectome; however, neural systems change during individual
development (Kaiser and Hilgetag, 2004b; Kaiser et al., 2009; Nisbach
and Kaiser, 2007; van Ooyen, 2003; Van Ooyen, 2005), brain evolution
(Ebbesson, 1980; Krubitzer and Kahn, 2003; Striedter, 2004), and
throughout life through structural and functional plasticity (Butz et
al., 2009; Friston et al., 1994; Hubel et al., 1977; Sur and Leamey,
2001). In addition, we can observe the dynamics in neural systems
and simulate dynamics in network representations of the brain
(Qubbaj and Jirsa, 2007).

In this work, we have outlined how routines from network
analysis can be applied to neural systems. However, neural systems
can also inform future work on the analysis of complex biological
networks. Neural systems present several challenges for the field of
network analysis. Neural systems differ from Erdds-Rényi and
traditional small-world networks in that they are modular and
hierarchical (Costa et al, 2011; Meunier et al., 2010; Sporns,
2011b). Network properties can be studied at different levels ranging
from connectivity between brain areas, connectivity within areas,
connectivity within columns (Binzegger et al., 2004), or connectivity
of groups and ensembles. Another difference with respect to standard
network models is that nodes, although treated as uniform at the
global level of analysis, differ at the neuronal level in their response
modality (excitatory or inhibitory), their functional pattern due to the
morphology of the dendritic tree and properties of individual
synapses, and their current threshold due to the history of previous
excitation or inhibition. Such heterogeneous node properties can also
be expected at the global level in terms of the size and layer
architecture of cortical and subcortical regions. Theories where the
properties and behavior of individual nodes differ, beyond their
pattern of connectivity, are still rare. Another theoretical challenge is
the comparison of network topologies and dynamics, e.g., between
experiments and in silico studies (Izhikevich and Edelman, 2008;
Kaiser et al., 2007a; Zhou et al., 2006).

In addition to theoretical challenges, network analysis also poses
computational problems. The analysis of experimental network data,
such as of a correlation network between voxels for MRI recordings,
can take a considerable amount of time. Whereas detecting all
network motifs (Ribeiro et al., 2009) in a single 100-node correlation
network is computationally feasible, long recordings could generate
dozens of such correlation networks, which come with enormous
computational demands. Similar demands arise from larger networks
such as region of interest (ROI) networks with around 1000 nodes.
These problems also occur for electrophysiological recordings: Multi-
electrode units with 4000 or more electrodes are now available. For
the electrophysiology field, the CARMEN Neuroinformatics project
(http://www.carmen.org.uk) addresses the storing, comparison, and
analysis of large data sets; similar initiatives for neuroimaging are
clearly needed and some projects along these directions already
started. High-performance computing is also needed for large-scale
simulations of neural circuits, such as the Blue Brain project for
simulating activity within a single cortical column (Silberberg et al.,
2005) or simulations of the whole brain (Izhikevich and Edelman,
2008).

In conclusion, connectome analysis provides several benefits to the
field of neuroimaging. First, it gives a network representation of a
human brain in that the size, shape, and position of brain regions are
abstracted away. In this way, networks reduce the complexity of
information yielded by neuroimaging recordings (Sporns, 2011a).
Second, networks can be compared between humans. In particular,
network analysis can identify differences between the brains of
patients and control subjects. These changes can either be used for
diagnosis of brain disorders or for evaluating treatment strategies.
Third, connectomes, together with properties of individual nodes and
edges as well as input patterns, form the structural correlate of brain
function. Therefore, connectomes now increasingly form the basis of
simulations of brain dynamics. These benefits of the emerging field of

connectome analysis (DeFelipe, 2010) are now within reach due the
availability of datasets, e.g. through the Human Connectome Project
or the 1000 Functional Connectome Project (Biswal et al., 2010), the
range of network analysis tools, and the computational feasibility of
network analysis and simulation.
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Appendix A

Table A1
Runtime complexity: assessing the speed of network analysis algorithms.

Network features differ in the amount of time and computer memory it takes to
calculate them. The runtime depends on the network feature, the implemented
algorithm, the number of nodes N and the number of edges E of the network, and the
speed of the processor. The memory size depends on the network representation
and, in some cases, the organization of the algorithm. Using an adjacency matrix
needs N? units of memory. Using adjacency lists saves memory using on the order of
E units but increases the runtime for several network measures when the edge
density is very high.

Rather than using the actual calculation time, which strongly depends on
processor speed, algorithms are categorized by the runtime complexity depending
on the network size. This is called asymptotic analysis that looks at the growth of
the running time instead of the absolute running time. For this, the asymptotic
O-notation (pronounced: Big-Oh), meaning ‘order-of, is used for getting
information about the worst-case scenario of running time. The worst-case
running time guarantees that an algorithm will not go above this upper limit. The
O-notation shows the order of calculation steps that are performed by an
algorithm. This means that only the largest terms that determine the runtime are
kept:

O(cN) = O(N) constants are neglected

O(N* + N + ¢) = O(N?) only the largest term of a polynomial is used

Using this notation, algorithms belong to complexity classes P, NP-hard, or NP-
complete (Cormen et al., 2009).

Rather than looking at computational complexity theory, I will provide some
examples for how long different network analysis algorithms take. Calculating the
degree of a node takes O(N) steps when an adjacency matrix is used and increases
linearly with the number of nodes N. Note that for a directed network, it takes 2N
steps for counting all incoming (column) and outgoing (row) connections, but the
constant 2 is neglected in the O-Notation. Calculating the degree of all N nodes
takes O(N?) steps and calculating the shortest path between all pairs of nodes
(characteristic path length) takes O(N?) steps; both being examples for polynomial
increase with the number of nodes. Calculating the characteristic path is already a
problem for large networks, but algorithms with non-polynomial runtime
complexity are even worse: testing whether two graphs are identical, a graph
similarity problem that occurs in motif analysis, takes N factorial, O(N!), steps
whereas the traveling salesman problem of finding the shortest metric path to visit
N cities takes O(N™) steps.

For large networks, some measures will take too long to calculate leaving three
options: using a different network measure where calculations are computationally
feasible, using parallel computing which works for some network measures, or
applying the measure to a subset (sample) of the network. An example for
sampling is the estimation of the characteristic path length of the world-wide-web
with 8 x 10® nodes based on a sample of a few thousand nodes (Albert et al., 1999).
Note, however, that sampling can become inaccurate especially when testing for
power-law degree distributions (Stumpf et al., 2005).
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Table A2
Glossary of network analysis terms.

Adjacency (connection) matrix: The adjacency matrix of a graph is an nx n matrix
with entries a;= 1 if node j connects to node i, and a;;= 0 if there is no connection from
node i to node j. Sometimes, non-zero entries indicate the strength of a connection
using ordinal scales for fiber strength or metric scales [— 1; 1] for correlation networks.
Average Shortest Path: The average shortest path ASP is the global mean of the
entries of the distance matrix. Normally, infinite values (non-existing paths) and
values across the diagonal (loops) are not taken into account for the calculation of
the mean of the distance matrix.

Adjacency list: List where each line represents one edge with information about
the source node, the target node, and (optionally) the weight of the edge
connecting both nodes.

Betweenness centrality: What proportion of all shortest paths are going through a
node or edge of the network. These values are then called node betweenness or
edge betweenness, respectively. See (Brandes and Erlebach, 2005) for other
measures of centrality or influence.

Characteristic path length: The characteristic path length L (also called “path
length”) is the median of the mean shortest path length of all individual nodes
(Watts, 1999).

Clustering coefficient: The clustering coefficient C; of node i is the number of
existing connections between the node's neighbors divided by all their possible
connections. The clustering coefficient ranges between 0 and 1 and is typically
averaged over all nodes of a graph to yield the graph's clustering coefficient C.
Cycle: A path that links a node to itself.

Degree: The degree k of a node is the sum of its incoming (afferent) and outgoing
(efferent) connections. The number of afferent and efferent connections is also
called the in-degree and out-degree, respectively.

Degree distribution: Probability distribution of the degrees of all nodes of the
network.

Degree sequence: The N-tuple (ky, ..., ky) with k; as degree of node i and k; <k; ; 1 is
called degree sequence.

Distance: The distance between a source node i and a target node j is equal to the
path length of the shortest path. To talk about spatial distance instead, use the term
metric distance.

Distance matrix: The entries d; of the distance matrix correspond to the distance
between node i and j. If no path exists, djj= .

Graph: Graphs are a set of N nodes (vertices, points, units) and E edges
(connections, arcs). Graphs may be undirected (all connections are symmetrical)
or directed. Because of the polarized nature of most neural connections, we focus
on directed graphs, also called digraphs.

Hub: Node with a degree that is much higher than for other nodes of the network.
In sparse networks, even the degree of a hub might be relatively low.

Kronecker symbol 6: 6;;=1 for i=j and 6;;=0 otherwise.

Loop: A connection of a node onto itself (in other words: a cycle of length 1).
Minimum spanning tree: A minimum spanning tree is a tree that connects all
nodes of a network with a weight less than or equal to the weight of every other
spanning tree. In this context, the weight is usually the total metric wiring length of
the tree when the network is a spatial graph.

Modular graph: A network with multiple modules.

Motif: Sub-graph with a certain number of nodes (usually 3, 4, or 5) that occurs
significantly more often in a given network than in rewired networks with the
same degree distribution.

Path: A path is an ordered sequence of distinct connections and nodes, linking a
source node i to a target node j. No connection or node is visited twice in a given
path.

Path length: The length of a path is equal to the number of distinct connections.
Random graph: An Erdés-Rényi graph with uniform connection probabilities and
a binomial degree distribution. All node degrees are close to the average degree
(“single-scale™).

Scale-free graph: Graph with a power-law degree distribution. “Scale-free” means
that degrees are not grouped around one characteristic average degree (scale), but
can spread over a very wide range of values, often spanning several orders of
magnitude.

Small-world graph: A graph in which the clustering coefficient is much higher than
in a comparable random network, but the characteristic path length remains about
the same. The term “small-world” arose from the observation that any two persons
can be linked over few intermediate acquaintances.

Spatial graph (or spatial network): A network where each node has a spatial
position. Usually, nodes in neural networks can have two- or three-dimensional
positions in metric Euclidean space.
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