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Abstract. Many networks exhibit the small-world property of the
neighborhood connectivity being higher than in comparable random networks.
However, the standard measure of local neighborhood clustering is typically
not defined if a node has one or no neighbors. In such cases, local clustering
has traditionally been set to zero and this value influenced the global clustering
coefficient. Such a procedure leads to underestimation of the neighborhood
clustering in sparse networks. We propose to include θ as the proportion of leafs
and isolated nodes to estimate the contribution of these cases and provide a
formula for estimating a clustering coefficient excluding these cases from
the Watts and Strogatz (1998 Nature 393 440–2) definition of the clustering
coefficient. Excluding leafs and isolated nodes leads to values which are up to
140% higher than the traditional values for the observed networks indicating
that neighborhood connectivity is normally underestimated. We find that the
definition of the clustering coefficient has a major effect when comparing
different networks. For metabolic networks of 43 organisms, relations
changed for 58% of the comparisons when a different definition was applied.
We also show that the definition influences small-world features and that the
classification can change from non-small-world to small-world network.
We discuss the use of an alternative measure, disconnectedness D, which is less
influenced by leafs and isolated nodes.
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1. Introduction

Many real-world networks show properties of small-world networks as their neighborhood
connectivity, generally denoted by the clustering coefficient, is higher than in comparable
random networks [1]. The local clustering coefficient for an individual node i with degi
neighbors and 0i edges between its neighbors is

Ci =
0i

degi(degi − 1)
. (1)

This formula is basically not defined if the number of neighbors degi becomes zero or one as the
denominator becomes zero [2]. These cases are usually treated as Ci = 0 although some authors
also set these values to one [3]. In the current scheme, these values would be part of the global
calculation

C1 =
1

N

∑
Ci . (2)

In addition, we tested an alternative and more widely used definition of the clustering
coefficient [4] in which

C2 =

∑
0i∑

degi(degi − 1)
. (3)

This might lead to biased assessments of neighborhood clustering in the sense that values that
are not defined (division by zero) should not be included in the averaging. Thus, instead of using
N as the number of evaluated nodes for the global C1, a new number N ′ indicating all nodes
with defined local clustering should be used for a global measure C ′. We show that using such
an adjusted measure for the clustering coefficient has several implications for network analysis
and can help to identify the contribution of leafs and isolated nodes to average clustering.

On a conceptual level, the adjusted value C ′ is more intuitive as the clustering coefficient
is commonly called a measure of neighborhood connectivity: if 30% of the local coefficients
are zeros from cases where no neighbors exist, how can the classical definitions still give
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information about neighborhood? Cases of leafs and isolated nodes are more likely in sparse
networks where the edge density d , the number of existing divided by the number of possible
connections (d = E/N ∗ (N − 1) for a network with N nodes and E directed edges or arcs),
is low. Therefore, the classical definition is a mixed measure of neighborhood clustering and
sparseness (edge density) or—more precisely—the frequency of leafs and isolated nodes.

A general problem of network measures, such as the clustering coefficient, is whether
sampling or perturbations change the values of these measures. Network measures are
frequently used for the classification of different networks [5] or of topological changes
(addition or deletion of nodes or edges) within the same network. Incomplete sampling—only
observing a sub-network of a larger network—can lead to the wrong classification of a network
as being a scale-free network [6]. This occurred, for example, for comparing the partial and
complete protein–protein interaction networks [7] and the router and underlying communication
network [8]. In addition to sampling, false scale-free classifications can also arise due to
statistical errors [9]. Whereas previous studies investigated the effect of sampling on the degree
distribution, a recent study [10] looked at the sensitivity to sampling and network perturbation
for a range of measures: the clustering coefficient, as well as the hierarchical clustering
coefficient, the hierarchical degree, and the divergence ratio were found to be least sensitive
to perturbations of the topology. Therefore, classifications using the clustering coefficient
(e.g. small-world classification [1]) are less affected by the sampling problem. However, as we
show here, the definition of the clustering coefficient can have a considerable effect on network
classification.

2. Materials and methods

2.1. Networks

We tested the effect of different definitions for the clustering coefficient on several real-world
networks. All but one network, the German highway system, were small-world networks. The
Caenorhabditis elegans neuronal network consisted of individual neurons as nodes and existing
synaptic connections as edges [11]. The metabolic networks of C. elegans, Saccharomyces
cerevisiae, and 41 other organisms included metabolic substrates as nodes and reactions as
edges [12]. The protein–protein interaction network of S. cerevisiae (yeast) included proteins as
well as interactions as discovered by the yeast two-hybrid method (http://dip.doe-mbi.ucla.edu,
dataset from 2 December 2007). The German highway (Autobahn) system consisted of location
nodes (that is, highway exits) and road links between them (Autobahn-Informations-System,
AIS, from http://www.bast.de) [13]. Only the gross level of highways were included in
the analysis, discarding smaller and local roads (‘Bundesstrassen’ and ‘Landstrassen’). For
the power grid, nodes represent generators, transformers and substations, and edges represent
high-voltage transmission lines between them [1]. For the World Wide Web, individual pages
are the nodes and links between them the edges [14]. Information about the size of the networks
as well as a reference to the source of the datasets is included in table 1. For comparisons,
we also generated random networks with the same number of nodes and edges as the original
networks described above. In such Erdös–Rényi random networks [15], the probability p that
an individual connection between the two nodes is established equals the edge density d of the
desired network.
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Table 1. Number of nodes N , edge density d , ratio θ of nodes with less than
two neighbors, and factor of increase f (C1 → C ′) for several biological and
artificial networks: C. elegans neuronal [11] and metabolic network [12], yeast
metabolic interaction network [16], yeast protein–protein interaction network
(http://dip.doe-mbi.ucla.edu, dataset from 2 December 2007), German autobahn
system [13], electrical power grid of the western United States [1], and World
Wide Web [14].

Network N d θ f

C. elegansneuronal 277 0.0275 0.0217 1.02
C. elegansmetabolic 452 0.0106 0.1416 1.17
S. cerevisiaemetabolic 551 0.0092 0.1198 1.14
S. cerevisiaePPI 4931 0.00143 0.2294 1.30
German highways 1168 0.0018 0.0865 1.09
Power grid 4677 0.000572 0.2609 1.35
World Wide Web 325 729 0.0000138 0.5868 2.42

2.2. Adjusted clustering coefficient definition

In addition to the two definitions for neighborhood clustering defined in the introduction, we
looked at the effect of removing nodes with less than two neighbors corresponding to leafs and
isolated nodes before averaging for the global clustering coefficient. The relation between the
new coefficient C ′ and the traditional measure C1 can be derived from the fraction of nodes that
have one or zero neighbors, θ by

C ′
=

1

1 − θ
C1. (4)

Therefore,

f =
1

1 − θ

is the factor of the increase of the clustering coefficient C1 by using the new method.
Unfortunately, there is no easy transformation between the new measure C ′ and the other
measure C2 (e.g. the correlation between the two measures is r = 0.06 for 43 metabolic
networks).

3. Results

What is the effect of the adjusted definition C ′ above? If one-third of local coefficients were
undefined, for example, the clustering coefficient would increase by 50% and would double if
half of the nodes were undefined. For the yeast protein–protein interaction network with 4931
nodes the clustering coefficients C1 and C2 raised from 14.4 and 8.4%, respectively to 18.7%
for C ′. That means that the value increased by 30% compared to C1 and more than doubled
compared to C2. For several real-world networks (table 1), values of neighborhood connectivity
increased by factors between 1.02 and 2.42; that means that the average clustering coefficient
increased by up to 142%. This indicates that current definitions significantly underestimate
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C1 = 0.26                            C1 = 0.30 
C2 = 0.30                           C2 = 0.21  
C ′ = 0.39                              C ′ = 0.30 

Figure 1. Comparison of clustering coefficients for a sparse (left) and a dense
(right) network with nine nodes. Whereas the clustering coefficient is higher in
the dense network for the standard measure C1, it is higher in the sparse network
for the novel, C2, and adjusted, C ′, neighborhood clustering. For the adjusted
clustering coefficient, isolated nodes or nodes with only one neighbor (indicated
here by red circles) are excluded from the averaging.

neighborhood clustering. For Erdös–Rényi random networks [15] with the same number of
nodes and edges as the yeast protein–protein interaction network the increase was maximally
4.3% and on average 0.7% for 100 generated networks; thus the new clustering coefficient is
still comparable with the edge density of random networks.

3.1. Network comparison

In addition to the effect for single networks, measures such as the clustering coefficient are
often used for comparing networks. Network comparisons can either involve different original
networks or the same network before and after structural perturbations. Previous studies
compared the clustering coefficient of 43 metabolic networks [17] and changes in neural
correlation networks for Alzheimer [18], schizophrenia [19] and epilepsy [20, 21] patients.

For network comparisons, the definition of neighborhood connectivity is critical for the
comparison (figure 1). Assuming that we have two networks Ga and Gb, where the first has
higher classical clustering (C1 measure) than the second one, i.e. Ca > Cb, then this relation
will swap for the new definition to C ′

a < C ′

b if Ca
Cb

< 1−θa
1−θb

. Let us look at the simpler case where
we compare a sparse network with a dense network still under the assumption that Ca > Cb.
As the dense network has almost no nodes that are isolated or leafs, we can set θb = 0. Then,
using the new definition C ′

a < C ′

b if θa < 1 −
Ca
Cb

. How often do these swaps occur in real-world
networks?

We examined the effect of the adjusted definition for the case of comparing sparse networks
by analyzing 43 metabolic networks [12]. Testing all 903 distinct relations between pairs of
networks, the relations changed—using the adjusted definition—in 58% of the cases for the
standard clustering C1. For the alternative more widely used definition C2, the relation changes
in 76% of the cases. Even switching between the traditional definitions C1 and C2 changed the
relation in 77% of the cases. Comparing the different measures for all 43 networks, we found a
linear correlation between C ′ and C1 but not between C ′ and C2 or C1 and C2 (figure 2). This
indicates that the effect of using a different clustering coefficient definition can often not be
predicted from an existing measure (factors of increase for switching from C1 and C2 to C ′ are
shown in table 2).
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Figure 2. Relations between different measures for the clustering coefficient in
43 metabolic networks. Whereas there is a linear correlation (r = 0.84) between
the new definition C ′ and C1 (A), there is no correlation between C ′ and C2

(B, r = 0.004) or C1 and C2 (C, r = −0.06).

Table 2. Ratios f of the adjusted clustering coefficient C ′ of 43 metabolic
networks with the Watts–Strogatz (C1) and Newman–Strogatz–Watts (C2)
clustering coefficient.

f Mean Median Minimum Maximum

C1 1.1510 1.1484 1.0479 1.3315
C2 2.6241 2.5673 1.7003 3.8999

Another way of comparing neighborhood clustering between networks is the use of
clustering coefficient functions. One such clustering coefficient function is C(k) where k is
the degree of a node and C(k) is the average clustering coefficient over all nodes with degree
k [22, 23]. Then, the distributions of C(k) with k > 1 for the two networks can be compared.
Such a comparison might detect cases where one network shows a linear, exponential, or power-
law distribution whereas the other network does not. Comparing two networks with a similar
distribution becomes more difficult. Whereas qualitative differences might be visible through
comparing the distribution plots, getting a quantitative value for describing these differences is
more challenging. Therefore, single values for describing networks will remain popular unless
standard ways for distribution comparisons are established.

3.2. Changes of small-world features

Many real-world networks show features of small-world networks [24]. In these networks, the
characteristic path length L remains comparable with random benchmark networks whereas the
average connectivity between neighbors (clustering coefficient) C of a node is much higher than
for random networks, that means L ' L random but C � Crandom [1]. One way to assess the extent
of small-world features is calculating the small-worldness s = (C/Crandom)/(L/L random) (note
that a comparison of small-worldness is only meaningful for similar edge densities as the edge
density influences the possible increase in the clustering coefficient). How do these small-world
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Figure 3. Change of small-worldness. Using C ′ leads to higher small-worldness
s if dots are below the identity line and to lower small-worldness above the line.
(A) θ for 43 metabolic networks. (B) θ for small-world networks generated by
rewiring starting with a lattice model [1] (inset) with 20 different edge densities
(maximum θ of 50 generated networks each). (C) θ for small-world networks
generated by condensation (inverse rewiring) starting with a random model
(inset) with 20 different edge densities (maximum θ of 50 generated networks
each).

features, in particular the clustering coefficient component of the small-worldness s, change
with the definition of the clustering coefficient?

Using the measure C ′ would lead to higher small-worldness s—the ratio between the
clustering coefficient in the original and a comparable random network—if numerator C for
the original networks increases at least as much as the denominator Crandom for the random
benchmark networks. We tested the increase of changing from definition C1 to C ′ which can be
calculated by the ratio θ (cf equation (4)): a larger value of θ results in a larger increase of the
clustering coefficient. Therefore, the small-worldness would increase as long as θ is larger for
the original rather than the random benchmark network.

We tested the increase for the 43 metabolic networks by generating 50 random networks
for each metabolic network and using the maximum value of θ out of the random networks. For
all 43 metabolic networks, θ was larger for the original network than for random benchmark
networks (figure 3(A)).

We also generated artificial small-world networks with 100 nodes and a variable edge
density ranging from the minimum (0.5%) to the maximum (2%) value of the metabolic
networks. For each edge density, 20 small-world networks were generated and for each such
small-world network, 50 comparable random networks were analyzed. In contrast to the
previous results of real-world networks, random networks show a higher ratio of leafs and
isolated nodes than the generated small-world networks (figure 3(B)). The reason is that the
small-world networks were generated starting from a lattice model followed by random rewiring
of the network [1]. Despite the rewiring, the strong neighborhood connectivity of the lattice
model remains and prevents the occurrence of leafs and isolated nodes.

To remove the effect of the lattice network being the starting point of rewiring, we
developed a small-world network generator with inverse rewiring3: the model starts with a

3 The Matlab script is available at http://www.biological-networks.org/.
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Figure 4. Fraction of cases when the network classification changed from
random to small-world when switching from C1 (x markers) or C2 (o markers)
to C ′. (A) Small-world networks generated by rewiring starting with a lattice
model (inset). (B) Small-world networks generated by condensation starting with
a random model (inset).

random network and rewires edges so that not only the connectedness but also the number
of isolated nodes increases. For a given network with E edges, 10 × E rewiring steps were
performed. At each step, an existing edge is chosen and deleted. Thereafter, another existing
edge is chosen and the starting node of that edge is connected with a randomly chosen node
that has not before been connected to that node. Each step elongates an existing chain of nodes
by adding an edge, potentially leading to the formation of triangles, whereas the removed edge
is either the internal or terminal part of a chain, leading towards a leaf node. For this model,
in accordance with the results from the real-world metabolic networks, θ for the generated
small-world network was below the value for random networks (figure 3(C)).

3.3. Changes of small-world classification

We have seen in the previous section that the small-worldness s of a network increases, or at
least stays the same, when the new measure C ′ is used compared to the classical measure C1.
Looking at both measures C1 and C2 could it be the case that networks that were previously
classified as random would be classified as small-world with the new measure C ′? This would
be the case if the ratio C/Crandom is lower than or close to 1 for the classical measures but much
higher than 1 for C ′.

Again we tested artificial small-world networks with 100 nodes and a variable edge density
using standard and inverse rewiring as described above. For each edge density, 200 networks
were generated and 100 benchmark random networks were evaluated for each generated
network. The definition of a change in classification from random to small-world was a
clustering coefficient ratio 61 for C1 or C2 and a ratio >2 when using the measure C ′. For
standard rewiring (figure 4(A)), the fraction of changed cases was zero except for a small range
of edge densities where the classification changed in up to 2.5% of the cases when shifting
from C2 to C ′. For inverse rewiring (figure 4(B)), however, classification changed in around
10% of the cases (up to 15% for some edge densities) when shifting from C2 to C ′ in the edge
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density range of 0.6–1.5%. For shifting from C1 to C ′, classification only changed up to 1% of
the cases; a fluctuation which might be due to the small sample size. In addition, a shift also
occurred between the classical measures C1 and C2: whereas changing from C1 to C2 affected
few cases, a shift from C2 to C1 affected up to 3% of the cases for standard rewiring and up
to 14% for inverse rewiring. Therefore, changes in classification are possible for all clustering
measures; in particular, when using inverse rewiring.

4. Discussion

We have shown that current definitions underestimate neighborhood clustering in sparse
networks with many isolated or leaf nodes. In addition, the outcome of comparisons of the
extent of small-world features between different networks critically depended on the applied
definition of the clustering coefficient. Furthermore, networks formerly classified as random
can be classified as small-world when isolated or leaf nodes are excluded from the calculation
of the average clustering coefficient. This can also happen when switching from C2 to C1.

Could the clustering coefficient definitions impact the analysis of small-world networks?
There are three consequences of this study. Firstly, small-world networks regarding previous
measures C1 and C2 will still be detected as small-world using C ′ as this value will be higher
than the previous values. Consequently, the small-worldness s—the ratio of the clustering
coefficient in the original and random benchmark networks divided by the unchanged ratio of the
characteristic path lengths in original and random networks—will be higher. Secondly, networks
which are currently not classified as small-world networks may be regarded as small-world due
to the increase in clustering coefficient. This case will occur when the path length is comparable
to that of random networks but the clustering coefficient, concerning previous definitions C1 and
C2, is not significantly higher than that of random networks. Thirdly, comparison of networks
could lead to opposite conclusions using the new measure. In conclusion, the novel measure C ′

gives a clearer view of neighborhood connectivity and is more independent of the sparseness of
edge density.

A problem of the proposed measure C ′ is that the percentage θ of nodes that are excluded
from analysis could be considerably high (table 1). The percentage of excluded nodes could
be as high as 14% for metabolic networks and as high as 59% for man-made networks
(power grid). Note that the value for the protein interaction network in yeast is also high at
56% as edge density is low and isolated nodes are not part of the largest connected cluster
observed here. In general, however, exclusion from the average affected less than 10% for most
of the networks. In addition, using a subset of defined nodes is comparable to the procedure
for calculating shortest paths or the characteristic path length where unreachable paths with
otherwise infinite distance are not included in calculating the average path length.

An alternative solution would be to describe the clustering coefficient using inverse
neighborhood clustering. For the shortest paths, for example, the inverse measure of
efficiency [25] where unreachable paths contribute 1/∞ = 0 to the local efficiency circumvents
the need for excluding unreachable paths. Similarly, the (neighborhood) disconnectedness D
could be defined as:

D =
1

N

∑
Di with Di = 1/Ci =

degi(degi − 1)

0i

and Di = 0 for 0i = 0. (5)
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Figure 5. Relations between disconnectedness D and measures for the clustering
coefficient in 43 metabolic networks. Correlations are r = 0.04 between C1 and
D (A), r = −0.28 between C2 and D (B), and r = −0.43 between C ′ and D (C).

Here, nodes which are leafs or isolated will contribute a zero value to the average D as one of
the degrees will be zero for these nodes. D will be high when neighbors are not connected and
low (→1) for high connectivity between neighbors. The correlations between disconnectedness
and measures of the clustering coefficient are shown in figure 5.

5. Conclusion

Including the percentage θ in publications could help to understand the validity of the applied
definition of the clustering coefficient regardless of whether it is the Watts–Strogatz definition
C1, the Newman–Strogatz–Watts definition C2, or the alternative definition C ′ presented here. In
addition, this information is critical for the classification as small-world networks. We therefore
suggest that information about the applied definition and the number of leafs and isolated nodes,
the ratio θ , should be included in addition to the value of the average clustering coefficient.
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