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Abstract

Structure entails function, and thus a structural description of the brain will help to understand its function and may provide insights
into many properties of brain systems, from their robustness and recovery from damage to their dynamics and even their evolution.
Advances in the analysis of complex networks provide useful new approaches to understanding structural and functional properties of
brain networks. Structural properties of networks recently described allow their characterization as small-world, random (exponential)
and scale-free. They complement the set of other properties that have been explored in the context of brain connectivity, such as
topology, hodology, clustering and hierarchical organization. Here we apply new network analysis methods to cortical interareal
connectivity networks for the cat and macaque brains. We compare these corticocortical fibre networks to benchmark rewired, small-
world, scale-free and random networks using two analysis strategies, in which we measure the effects of the removal of nodes and
connections on the structural properties of the cortical networks. The structural decay of the brain networks is in most respects similar
to that of scale-free networks. The results implicate highly connected hub-nodes and bottleneck connections as a structural basis for
some of the conditional robustness of brain systems. This informs the understanding of the development of connectivity of the brain
networks.

Introduction

The brain can be remarkably robust to physical damage. Significant
loss of neural tissue can be compensated for in a relatively short time
by large-scale adaptation of remaining brain parts (e.g. Spear et al.,
1988; Stromswold, 2000; Young, 2000). On the other hand, the
removal of small amounts of tissue (e.g. in Broca’s area) can lead to a
severe functional deficit. These findings provide a somewhat contra-
dictory picture of the robustness of the brain and suggest a number of
questions. Can we evaluate effective robustness given this variability
in the effects of brain lesions? Are severity and nature of effects of
localized damage predictable? We assess here how connectivity data
of brain area connectivity can be brought to bear on these questions.

The functionality of any system is grounded in its structural
properties. For neurosciences, this has led to exploration of the
structural properties of brain networks, such as topology, hodology,
clustering and hierarchical organization (e.g. Nicolelis et al., 1990;
Felleman & van Essen, 1991; Young, 1992; Young et al., 1994;
Hilgetag et al., 1996, 2000; Sporns et al., 2000; 2004; Young, 2000;
Petroni et al., 2001; Kaiser & Hilgetag, 2006). Recent advances in
the study of networks have extended those traditional structural
descriptions (Strogatz, 2001), allowing to characterize networks as

small-world (Watts & Strogatz, 1998), random and scale-free
(e.g. Barabási & Albert, 1999; Albert et al., 2000).
Small-world networks comprise well-connected local neighbour-

hoods with fewer long-range connections between neighbourhoods.
The length of a path between two nodes, that is the number of
connections that have to be crossed to go from one node to another, is
comparably low as for a randomly organized network. Scale-free
networks are characterized by their specific distribution of connectiv-
ities or degrees ) the number of connections that each node has. The
degree distribution follows a power law. While these networks can
have highly connected nodes or hubs, networks where nodes have
maximally 20 connections have also been described as scale-free
based on the power-law degree distribution (Jeong et al., 2001).
Small-world and scale-free properties are compatible, but not equiv-
alent (see, e.g. Amaral et al., 2000).
Scale-free networks have higher robustness than random ones

against randomly located damage, whilst being sensitive to damage
targeted at their most widely connected nodes (Barabási & Albert,
1999; Young, 2000). This is reminiscent of the properties of the brain
described above.
Previous studies have shown that functional networks of the human

brain are scale-free (Eguiluz et al., 2005). However, at the level of
resting state networks between cortical areas, it was argued that these
networks are not scale-free (Achard et al., 2006). Here we analyse
what pattern occurs at the level of structural connectivity. In order to
establish whether the brain has properties of scale-free networks, the
integrity and robustness to damage of the structure of brain networks
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is compared with that of benchmark random and scale-free networks
(an earlier version of this work has been presented as a conference
abstract, see Martin et al., 2001).

Materials and methods

Brain structure connectivity data

We used macaque and cat cortical interareal connectivity data (Young,
1993; Young et al., 1994; Scannell et al., 1995), applying the CoCoMac
database for the primate data (Stephan et al., 2001;Kötter, 2004). In both
species, the data comprised connections among cortical regions of the
neocortex. We used standard datasets that have been applied for more
than 10 years, as properties of these datasets are well understood.
Whereas some newly found connections will not be included in the
analysis, the total number of undiscovered fibre tracts is likely to be
comparatively low (Costa et al., 2007), and assuming that untested
connections exist was not found to alter the conclusions of previous
studies (e.g. concerning the cluster organization, Young et al., 1995).
For the macaque brain, we considered 66 brain structures with 608

connections between them. In the case of the cat brain, we considered
56 structures and 814 connections. We excluded cross-hemispheric
connections. The data were represented as the binary connectivity
matrix of a graph. Nodes corresponded to the considered brain
structures and edges to the reported connections between them. Note
that due to the directed nature of brain connections, the connectivity
matrix is not necessarily symmetric and the resulting graph has hence
directed edges too. The edge density of the macaque brain graph, that
is, the number of reported connections divided by the number of all
possible connections, is 26.4% (Table 1). For the cat brain, the edge
density is 14.2%. There are on average 9.2 connections for each
structure in the macaque brain and 14.5 connections for the cat brain
structures (see Supplementary material, Appendix S1, for the
connectivity matrices).

Benchmark networks for comparison

We constructed rewired, scale-free, small-world and random networks
to match the number of nodes and connections of the corresponding two
brain networks (Table 1). Figure 1 shows examples of small random and
scale-free networks to demonstrate differences in their topology. For
random networks, the number of connections of a node is close to the
average value over all nodes. For scale-free networks, however, nodes
with amuch higher number of connections can occur; see hub in Fig. 1B.

Rewired networks

For rewired networks, each node has the same number of connections
as in the original network, however, targets or sources of connections
might have changed. Rewired networks were derived from the original
cortical networks of the cat and macaque by exchanging connections
so that the total number of connections of each node remained the
same (the method for randomization is described in Milo et al., 2002).
Whereas the degree distribution remains unchained, the cluster
architecture is lost during rewiring. Thus, rewired networks allow
looking at effects of the degree distribution alone.

Scale-free networks

The algorithm to generate scale-free benchmark networks is based on
Barabási & Albert (1999). However, in a modification of their approach
we began with an initial graph of six and eight fully connected nodes,
respectively, for the macaque and cat benchmark networks. This was
necessary in order to ensure that the clustering coefficient (average
percentage of connections between neighbours of a node; see definition
below) of the initial graph matched the highest clustering coefficient
found in the corresponding brain network. As proposed by Barabási &
Albert (1999), further nodes were added one by one to the graph by
preferential attachment. At the beginning of this process, the probability
that a new node is connected to an existing node i is:

PðiÞ ¼ kiP
j

kj

;

where kj is the number of connections of the node j (Barabási &
Albert, 1999). After establishing a connection to node i*, the
probabilities are recalculated to reflect the nature of the scale-free
networks: if i is connected to j, then it is more likely that i is connected
to nodes that are already connected to j and it is less likely that i is
connected to nodes that are not connected to j. The rescaling was
undertaken according to:

P �ðiÞ ¼ ki � P ðiÞ; if i and i� are connected
PðiÞ; if i and i� are connected

�

P ðiÞ ¼ P �ðiÞP
j

P �ðjÞ
:

The probability for the connections in both directions is the same. We
confirmed that this modified routine for generating scale-free networks

Table 1. Comparison of brain networks and benchmark networks

ASP Clustering coefficient

Macaque 2.414 0.453
Random mean 2.093 ± 0.009 0.142 ± 0.004
Rewired mean 2.118 ± 0.010 0.239 ± 0.009
Small-world mean 2.439 ± 0.054 0.416 ± 0.022
Scale-free mean 2.078 ± 0.042 0.564 ± 0.042

Cat 1.961 0.542
Random mean 1.749 ± 0.002 0.265 ± 0.003
Rewired mean 1.803 ± 0.006 0.381 ± 0.006
Small-world mean 1.868 ± 0.017 0.461 ± 0.016
Scale-free mean 1.768 ± 0.014 0.535 ± 0.029

The table shows the ASP and the clustering coefficient statistics for the ma-
caque and cat brain structure networks, and for the respective benchmark
random, rewired, small-world and scale-free networks. For the benchmark
networks, the data show the mean value and the standard deviation of 50
generated networks. ASP, average shortest path.

Fig. 1. Examples of random and scale-free networks. Schematic view of
network connectivity features. (A) Simple scale-free network having highly
connected nodes (hubs) here shown at the centre. (B) Simple random network;
both networks have the same number of nodes and edges.
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was able to yield a power-law degree distribution (cf. Supplementary
material, Appendix S1).

Small-world networks

Small-world networks were generated by rewiring regular networks,
as described in the literature (Watts & Strogatz, 1998). The rewiring
probability was adjusted so that the resulting networks had similar
clustering coefficients to the respective cortical networks (Table 1).

Random networks

Whereas all benchmark networks are generated by a random process,
we denote Erdös-Renyi random networks (Erdös & Rényi, 1960) as
random networks in the remaining manuscript. Random networks
were generated by establishing each potential connection between
nodes with probability p. This probability was the desired connection
density, i.e. the connection density of the corresponding brain
networks, 14.2% of the number of all possible connections for the
macaque and 26.4% for the cat. The degree distribution in these
random networks followed a binomial probability distribution. For
large numbers of nodes this can be approximated by a Poisson
distribution, and hence the term ‘exponential degree distribution’ is
also used (Bollobas, 1985).

Graph similarity

To assess the discrepancy in connectivity between two networks, first
the nodes are permuted according to their number of connections.
Second, permutated cortical and benchmark matrices are compared by
looking at the ratio of directed edges in the adjacency matrix that
occurred at the same position in both matrices and the total number of
directed edges. This percentage is then the graph similarity S between
graph A and B given the number of (directed) connections |E|:

S ¼
P

A ^ B
jEj

;

where ^ is element-by-element multiplication, with an element in the
resulting matrix non-zero if both elements are non-zero; S is the sum
of all elements in the matrix and thus yields the number of directed
edges existing in both matrices, as these are denoted by a value of one
in the matrix. Note that benchmark networks could be more similar
than they appear for this measure as not all possible arrangements of
nodes were tested. Testing all possibilities (1092 for the macaque and
1074 for the cat) would have been computationally unfeasible.

Network characterization

The clustering coefficient shows the fragmentation of the network.
The coefficient is the ratio of the number of existing edges between
neighbours of a node i and the number of possible edges between all
these neighbours. We considered neighbouring nodes of node i to be
all those nodes that have incoming or outgoing connections between
them and node i. If a node i has ki neighbours, then the number of all
possible in- and outgoing edges between the neighbouring nodes is
ki* (ki ) 1). The coefficient itself is a local property of each node, and
we define the average coefficient of all nodes to be the clustering
coefficient of the graph. This is a measure of how well connected the
nodes of the network are.

Following Albert et al. (2000), we considered the average shortest
path (ASP) or characteristic path length to characterize the network
connectivity and integrity. The ASP between any two nodes in the
network is the number of sequential connections that are necessary,
on average, to link one node to another by the shortest possible route
(Diestel, 1997). In case a network becomes disconnected in the
process of removing edges ⁄ nodes and there is no path between two
nodes, the pair of nodes is ignored. If no two connected points are
left, the average shortest path is set to zero. We used Floyd’s
algorithm to determine the matrix of the shortest paths between each
pair of nodes (Cormen et al., 2001). Note that due to directed edges,
the shortest path from node i to node j may not be the same as that
from node j to node i.

Target determination

In order to determine the importance of a node to the overall network
structure, a simple metric has been used, namely the number of
connections formed by this node. In experiments requiring the targeted
removal of nodes from the networks, the most highly connected node
was eliminated.
To provide the corresponding metric for the targeted elimination of

connections (edges) from the network, we chose edge betweenness
(Girvan & Newman, 2002), that is, the number of shortest paths
between all pairs of nodes that pass though the edge. Edges with high
edge betweenness are chosen for targeted attack. Indeed, edge
betweenness has been shown to highly correlate with structural
network damage for cortical as well as other biological networks
(Kaiser & Hilgetag, 2004).

Analysis methods

We used the iterative ‘random’ and ‘targeted’ removal of ‘nodes’ and
‘connections’ to analyse the robustness of the networks against
damage. Random removal means that we selected a node or
connection and deleted it from the graph irrespective of the degree
of the node. In the case of targeted removal, we selected the most
important node or connection left in the network (see above). After
each deletion, we calculated the ASP of the resulting graph. We
continued the removal of nodes or connections until all nodes were
removed from the network. To derive estimates of the variability in
these connectivity measures, we considered 50 benchmark networks
for each condition. In the cases of random removal, we repeated the
analysis for the brain networks 50 times as well.

Results

Degree distribution of cortical networks

Figure 2 shows the degree distributions of macaque and cat compared
with a distribution of random networks. In comparison to random
networks, the macaque cortical network has highly connected nodes
but also more sparsely connected nodes, reminiscent of scale-free
networks. This is also true for the cat network that shows a remarkable
number of areas with few connections compared with random
networks. Table 2 shows the five most highly connected nodes for
the cat and macaque networks.
The standard way of observing whether the cortical network

resembles a scale-free network would be to search for a power-law in
the degree distribution. However, this approach would be inappropri-
ate for cortical networks for three reasons. First, there exists a
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sampling problem in that the amount of unknown or not included
connections might change the shape of the degree distribution (Stumpf
et al., 2005). Second, the maximum number of connections of a node
equals the number of regions in the network minus one, that means, 65
(macaque) or 55 (cat). Therefore, the degree distribution only consists
of two orders of magnitude. Third, where degree distributions with a
low maximal degree had been studied before (Jeong et al., 2001), the
number of nodes was considerably higher (> 1800). When less than
100 nodes form the degree distribution, results are unlikely to be
robust. For such networks, individual outlier nodes with very high
connectivity might directly alter the tail of the degree distribution,
whereas for larger networks the degrees of several nodes will be
binned so that outliers are less influential. Therefore, we test for scale-
free behaviour by using indirect measures whose outcome can not be
significantly altered by one individual node.

Graph similarity

While the degree distribution is an abstraction of the underlying
network, we looked at a direct comparison between the cortical and
benchmark networks. As a direct measure of network similarity
was computationally unfeasible (see Materials and methods), we
compared the adjacency matrices after ordering nodes by their degrees
(see Materials and methods). We then looked at the similarity of
cortical networks with different benchmark networks (Fig. 3). For
rewired cortical networks, the percentage of identical edges was 23%
for rewired macaque and 38% for the rewired cat network. Interest-
ingly, benchmark scale-free networks are as similar to the cortical
networks as the rewired cortical networks. In contrast, the similarity of
random and small-world networks is significantly lower. This can be
attributed to the degree distribution of scale-free and cortical networks
being comparable as the rewired network only has the degree
distribution in common with the original cortical network. After these
structural properties, we tested the effect of topological changes on
general network properties.

Sequential elimination of nodes

We tested the influence of sequential node elimination on the network
structure. Nodes were removed one by one from the network, either

Table 2. Overview of the most highly connected regions in the cat and
macaque network

Rank Area Total Incoming Outgoing

Cat
1 AES 59 30 29
2 Ia 55 29 26
3 7 54 28 26
4 Ig 52 22 30
5 5al 49 30 19

Macaque
1 A7B 43 23 20
2 LIP 42 19 23
3 A46 42 23 19
4 FEF 38 19 19
5 TPT 37 18 19

The table shows the total number of connections of the region (degree) as well
as the number of incoming ⁄ afferent (in-degree) and outgoing ⁄ efferent (out-
degree) connections. The maximal possible number of connections would have
been 110 connections for the cat and 130 connections for the macaque.
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Fig. 2. Direct comparison of degree distribution. (A) Histogram of the degree
distribution of the macaque (grey) compared with the distribution of random
networks (binomial distribution given the probability P ¼ 0.1417 that an edge
occurs, black). (B) Histogram of the degree distribution of the cat (grey)
compared with the distribution of random networks (binomial distribution
given the probability P ¼ 0.2643 that an edge occurs, black).
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Fig. 3. Similarity of network connectivity. For each type of benchmark
network, 1000 networks were generated. As the cat network has a larger
number of edges, the percentages of similar edges are also higher. The
similarity with the cortical networks is as good for the scale-free networks as
for the rewired cortical networks. In contrast, the similarity of random and
small-world networks is significantly lower.
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randomly or targeted. Plotting the ASP as a function of the fraction of
deleted nodes illustrates the characteristic structural disintegration of
each network type. (See Fig. 4 for the example of targeted elimination
of nodes from the macaque benchmark networks. The complete set of
curves for the different analysis types is available as Supplementary
material, Appendix S1).

Figure 4A illustrates the effect of random and targeted removal of
nodes from the macaque brain network. Clearly, the specific decline in
ASP is different for the two analysis strategies. Whilst the random
removal causes only a slow rise in the ASP, targeted removal of highly
connected nodes has a much stronger effect on the network structure
of the brain network. After a steep rise in ASP the network fragments
into smaller components. The remaining shortest paths, that is the
paths between nodes within components, are smaller than in the
original network. This process leads to a network with pairs of nodes
that are connected to each other but not to other nodes of the network.
In these cases, the shortest path decreases to a value of one. Finally,
also nodes within pairs are removed leading to an ASP of zero.

Figure 4B and C contrasts this specific curve to those observed
when removing nodes from the different benchmark networks in a
targeted fashion. Whilst the ASP in the random and small-world
networks is hardly affected by the targeted elimination of a large
proportion of nodes, in the scale-free, like in the brain, networks the
effect of targeted node elimination manifests itself in a sharp rise in
this measure. Moreover, both the scale-free and the brain networks
show a decline in the ASP around the fraction of deletions, and the
characteristic behaviour of the brain network is within the 95%
confidence interval encountered for the set of scale-free benchmark

networks. This is not the case for the other benchmark networks
considered (see Fig. 4).
For the cat brain network (Fig. 5), the random and small-world

networks show a different behaviour for targeted node removal than
the original cortical network. Though the cat response to targeted node
removal is largely within the 95% confidence interval for the scale-free
benchmark networks, the peak ASP value and the fraction of deleted
nodes where the peak occurs is lower for the cat cortical network.
The decline in ASP at a later stage during the elimination process,

as observed for the brain and scale-free networks, may appear unusual
and deserves some additional attention. It can be caused by two
reasons. First, it could be that the network gets fragmented into
different disconnected components. Each of these is smaller, and likely
to have a shorter ASP. Second, the overall decrease in network size
with successive eliminations can lead to a decrease in shortest path.
This is, however, likely to be a slow process, as it will usually be offset
by an increase in ASP due to the targeted nature of the elimination.
In order to quantitatively compare the different graphs, we consider

two measures. The first is the maximal ASP measured during the
removal of nodes; the second is the fraction of deleted nodes for which
the peak ASP occurs (Fig. 6). For the fraction of peak ASP, only the
scale-free benchmark networks are close to the cortical fraction, whereas
all other benchmark networks show significantly higher fractions. This
means that both in the cortical as well as the scale-free networks the
removal of highly connected nodes leads to a rapid increase of ASP so
that the fraction of deleted nodes at which the maximum ASP occurs is
earlier than for other networks. However, the peak value for scale-free
networks is greater than that for cortical networks.

Sequential elimination of connections

We also tested the similarity of sequential connection elimination.
Connections were eliminated one after another either randomly or

Fig. 5. Sequential node eliminations in cat cortical networks. The fraction of
deleted nodes (zero for the intact network) is plotted against the average
shortest path (ASP) after node removals. Nodes were removed in order of
connectivity, starting with the most highly connected nodes (targeted elimin-
ation) or the node order was determined randomly (random elimination).
(A) Cortical network during targeted (dashed) and random (solid line)
elimination. ORI, original (brain) network. The lines in (B) and (C) have the
same meaning as in Fig. 4. (B) Small-world benchmark network (SW). (C)
Scale-free benchmark network (SF). (D) Random benchmark network (RND).

Fig. 4. Sequential node eliminations in macaque cortical networks. The
fraction of deleted nodes (zero for the intact network) is plotted against the
average shortest path (ASP) after node removals. Nodes were removed in order
of connectivity, starting with the most highly connected nodes (targeted
elimination) or the node order was determined randomly (random elimination).
(A) Cortical network during targeted (dashed) and random (solid line)
elimination. ORI, original (brain) network. In the subsequent plots (B–D),
the dashed line shows the average effect of targeted elimination and the thin
dashed lines the 95% confidence interval for the generated networks. The solid
line represents the average effect of random elimination. The dashed grey line
represents targeted removal in the cortical network of (A) for comparison.
(B) Small-world benchmark network (SW). (C) Scale-free benchmark net-
work (SF). (D) Random benchmark network (RND). (The complete set of
figures for cat and macaque with node and edge elimination and the effect on
ASP is available in the Supplementary material, Appendix S1).
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targeted. Full details of the disintegration of the networks are shown in
the Supplementary material, Appendix S1. Again we compare the
maximal ASP measured during the removal of connections and the
fraction of deleted connections for which the peak ASP occurs (Fig. 7).
Only the scale-free benchmark networks yield similar values for

both the cat and macaque network, whereas other networks yield
similar values for just one of the cortical networks.

Discussion

We have compared brain interarea connectivity networks with
different types of benchmark networks, including random, scale-free
and small-world networks, and found strong indications that the brain
connectivity networks share some of their structural properties with
scale-free networks. Besides a formal assessment of the network
connectivity (degree distribution and graph similarity, see Figs 3
and 4), the analysis is based on a novel approach, which measures the
effect of removal of components of the different networks on their

structural integrity. In particular, we compared the effect that the
removal of nodes and connections had on the ASP found in the brain
connectivity networks and their benchmark counterparts.
Note, however, that this analysis is based on cortical connectivity

within one hemisphere. Connections between hemispheres and
between the cortex and subcortical structures such as thalamic regions
were not included. The reason for the lack of interhemispheric
connections was that few tracing studies tested for and thus reported
fibre tracts towards the contralateral hemisphere. Although informa-
tion about thalamocortical connections would have been available,
regions with available information about fibre tracts differed between
the cat and macaque. To be consistent between species, the data were
not included. For each species, an inclusion of these regions yielded
similar results concerning the removal of nodes or edges (Supple-
mentary material, Appendix S1).
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We also did not take into account edge weights for calculating
structural robustness as: (i) connection weights are only known for a
subset of the used cortical network; (ii) weights would have been
ordinal values from weak (value 1), intermediate (2) to strong (3); and
(iii) there are numerous models for generating weighted networks.
Multiple models would introduce ambiguity in choosing one of the
models for network generation as well as for choosing a function to
map continuous weights onto the ordinal scale.

Simulated robustness and its relation to lesion studies

How do our simulations relate to experimental lesion studies? Node
elimination corresponds indirectly to inactivation or lesion of the
corresponding brain areas, and from this perspective we can interpret
this analysis in terms of the brain’s robustness to regional damage. The
elimination of connections corresponds indirectly to localized brain
lesions that damage the white matter and interrupt communication
between normally connected brain structures. The ASP yields a
measure of how well the brain is connected and how well different
streams of information can be integrated. Analysis of the spatial
organization of cortical networks shows that the brain is optimized
towards a low ASP (Kaiser & Hilgetag, 2006). A recent clinical study
of the electroencephalogram (EEG) correlation network in patients
with Alzheimer’s disease suggests that increases in ASP lead to a
reduced performance in memory tasks (Stam et al., 2007). In this
study, the ASP of the EEG synchronization network has been higher in
patients with Alzheimer’s disease compared with the control group.
Furthermore, there was a negative correlation between the patients’
ASP and their performance in a standard clinical memory test.
Although the study was based on functional rather than struc-
tural ⁄ anatomical networks, recent studies using diffusion tensor
imaging have shown that changes in brain connectivity can be linked
to diseases such as schizophrenia and Alzheimer’s disease.

All observations have been made equally during the analysis of the
brain networks of cat and macaque, despite different edge densities in
the two networks. It is therefore prudent to conclude that it may be
extended to other mammalian brain networks. Hence, conditional
robustness of brain function may be based to a large extent on two
fairly simple structural properties of brain networks: firstly, the
number of connections of individual nodes (Young, 2000), i.e. their
scale-free nature; and secondly, the heavily connected local clusters
with fewer important ‘bottlenecks’ between them (Kaiser & Hilgetag,
2004). Consequently, it appears feasible to determine the brain
structures that are the most important to the maintenance of network
function. Typically, brain networks should be able to function robustly
in the face of damage to structures that have few connections and
damage to connections that do not form part of many shortest
connections between pairs of areas. On the other hand, functional
effects should be dramatic when structures with very many connec-
tions (hubs) are damaged and when connections between structures
with very different connectivity patterns (large edge betweenness, cf.
Girvan & Newman, 2002) are damaged.

Is the brain a scale-free network?

One important feature of our approach is that the rigorous checking
of a series of benchmark networks allows assessing the significance
of any similarities to other network types found. In the study of a
much simpler brain network, it has previously been established that
the brain of C. elegans is small-world, but not scale-free (Amaral
et al., 2000). However, we found that effects of damage on the

modelled cat and macaque brain connectivity networks are largely
similar to those observed in scale-free networks. Furthermore, the
similarity of scale-free and original cortical networks, as measured
by graph similarity, was higher than for other benchmark networks.
This agrees with other findings: a scale-free network architecture has
been found for functional brain networks in humans (Eguiluz et al.,
2005). In addition, the human resting state network of 90 cortical
and subcortical regions showed similar behaviour after the removal
of nodes than our structural network (Achard et al., 2006). This
could now be explained by the underlying structural connectivity.
We note that this issue remains controversial. A study of the human

resting state network between cortical areas (Achard et al., 2006)
concluded that the resting state network is not a scale-free network as:
(i) it is more resilient towards targeted attack compared with a scale-
free benchmark network; (ii) the degree distribution is not a power-
law; and (iii) late developing areas such as the dorsolateral prefrontal
cortex are among the hubs of the network. The structural network that
we analysed, however, differed from the resting state functional
network. First, the resilience towards targeted attack was similar to
that of a scale-free network. Second, though the degree does not
follow a power-law distribution this might be due to the small size of
the network and incomplete sampling of connections between regions.

A design for robustness or by-product of functional constraints?

Is the brain optimized for high robustness or is robustness a by-product
of other constraints? In our view, the emergence of highly connected
areas is more likely to be a side-effect of brain evolution and
development generating structures for efficient processing. For exam-
ple, highly connected areas (hubs) in the brain could play a functional
role as integrators or spreaders of information (Sporns & Zwi, 2004).
What could be developmental reasons for some regions having a

higher connectivity than others? There are several potential develop-
mental mechanisms that yield brain networks with highly connected
nodes. Work in brain evolution suggests that when new functional
structures are formed by specialization of parts of phylogenetically older
structures, the new structures largely inherit the connectivity pattern of
the parent structure (e.g. Preuss, 2000). This means that the patterns are
repeated and small modifications are added during the evolutionary
steps that can arise by duplication of existing areas (Krubitzer & Kahn,
2003). Such inheritance of connectivity by copying of modules is
proposed to lead to scale-free metabolic systems (Ravasz et al., 2002).
A developmental mechanism for varying the edge degree of regions
could be the width of the developmental time window for synapto-
genesis at different regions (Kaiser & Hilgetag, 2007).
In conclusion, we have introduced a quantitative method to charac-

terize the robustness of brain networks and compare it with that of
standard network types. We have shown that cortical networks are
affected in ways similar to scale-free networks concerning the elimin-
ation of nodes or connections. However, a direct comparison of degree
distributions has been impossible. Our analysis can be extended to
employ more elimination strategies or use different properties to
characterize the damaged networks. In the future, it would be interesting
to compare the effect of experimental lesions with the simulated lesions
of our approach. We therefore hope that this theoretical approach will
prove useful in modelling robustness towards lesions.

Supplementary material

The following supplementary material may be found on www.
blackwell-synergy.com
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Appendix. S1. I. Network as analyzed in the main manuscript. II.
Network including subcortical regions. III. Algorithm for generating
scale-free networks.
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