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The understanding of neural activity patterns is fundamentally linked to an
understanding of how the brain’s network architecture shapes dynamical pro-
cesses. Established approaches rely mostly on deviations of a given network
from certain classes of random graphs. Hypotheses about the supposed role
of prominent topological features (for instance, the roles of modularity, net-
work motifs or hierarchical network organization) are derived from these
deviations. An alternative strategy could be to study deviations of network
architectures from regular graphs (rings and lattices) and consider the
implications of such deviations for self-organized dynamic patterns on the net-
work. Following this strategy, we draw on the theory of spatio-temporal
pattern formation and propose a novel perspective for analysing dynamics
on networks, by evaluating how the self-organized dynamics are confined
by network architecture to a small set of permissible collective states. In par-
ticular, we discuss the role of prominent topological features of brain
connectivity, such as hubs, modules and hierarchy, in shaping activity pat-
terns. We illustrate the notion of network-guided pattern formation with
numerical simulations and outline how it can facilitate the understanding of
neural dynamics.

1. Background: self-organized dynamic patterns in complex
brain networks

A wide range of biological systems are organized in a network-like fashion.
Accordingly, the large and diverse field of network science has since its very
beginning resorted to biological examples to motivate, propose and refine
methods for the analysis of complex networks (e.g. [1–3]). In this way, network
science has become a new important paradigm for the understanding of bio-
logical systems. Clearly, one of the most fascinating examples of a biological
network is the brain. The way in which the brain’s network topology shapes,
organizes and constrains dynamical processes has received a great amount of
attention in recent years and has provided new perspectives in theoretical
neuroscience [4,5].

Another diversely explored paradigm for the understanding of biological sys-
tems is the concept of self-organized patterns, where collective modes of the system
emerge from the local interactions of components (e.g. [6]). Diverse forms of dis-
tributed computation and global organization are implemented in biological
systems via such local interactions, from the rich ornaments of seashells and the
diversity of animal coat patterns to the myriad of fractal structures in biology
and pattern-forming colonies of bacteria. Particularly fascinating are patterns
changing with time, resulting in spatio-temporal patterns, such as propagating
waves and aggregation streams. Bacteria form large branched and nested aggrega-
tion-like patterns to immobilize themselves against water flow (see Levine &
Ben-Jacob [7] for a review of various such forms of pattern formation). The individ-
ual amoeba in Dictyostelium discoideum colonies initiates a transition to a collective
multicellular state via a quorum-sensing form of communication: a cAMP signal
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propagating through the community in the form of spiral waves
and the subsequent chemotactic response of the cells lead
to branch-like aggregation streams (e.g. [8–10]). So far, how-
ever, these patterns have been mostly discussed for regular
interaction architectures, such as lattices.

In this review, we explore a novel view where these two
paradigms, network science on the one hand and self-
organized pattern formation on the other, are functionally
integrated. We discuss some recent findings regarding dynami-
cal processes in topologically complex brain networks, to
demonstrate the occurrence of pattern formation guided by the
characteristic network architecture. Furthermore, we illustrate
with a few simple examples that network-guided pattern forma-
tion is a universal and unifying approach for understanding a
heterogeneous set of observations about neural dynamics in
structured graphs. Our goal, thus, is to provide the first steps
in a unifying framework for these diverse perspectives, explain-
ing how dynamics and topology are tuned in a synergistic
fashion via network-guided biological self-organization.

We focus on the organization of excitable dynamics on
graphs. On regular graphs (i.e. rings and lattices), the natural
approach of describing dynamical processes is by resorting to
the language of large-scale spatio-temporal patterns emerging
from local interactions in a self-organized fashion. The exact
layout of the patterns is typically determined by random fluc-
tuations or by systematic differences between the nodes of the
graph. Here, we show that on a graph with less regularity, pat-
terns can be confined by the network architecture to a few
network-compatible modes. This phenomenon of network-
guided pattern formation can facilitate the interpretation of
neural dynamics.

The logic of this paper is as follows. First, we describe
some fundamental topological features of brain networks
that have received attention over the last few years, in par-
ticular, their heterogeneous degree distribution, resulting in
the existence of hubs; as well as modules and a hierarchical
organization of networks. Next, we introduce two minimal
dynamical models, helping us to probe these dynamics
for the phenomenon of network-guided pattern formation,
specifically, reaction–diffusion dynamics as the prototype
of pattern-forming dynamical systems, and a simple three-
state model of excitable dynamics, which has been employed
in various systems for studying the interplay of network top-
ology and dynamics. Finally, we attempt to derive from these
observations some tentative general conclusions for the
organization of brain dynamics.

(a) Theories of spatio-temporal pattern formation
Theories of spatio-temporal pattern formation have contributed
fundamentally to a deep understanding of natural processes,
particularly in biology. One striking example is Turing’s con-
cept of reaction–diffusion processes, which has a vast range
of applications—from biology to social systems [11]. At the
same time, these theories (or classes of models) are well
embedded in the broader framework of self-organization.

Self-organization is the emergence of large-scale patterns,
based on collective dynamical states, from local interactions.
Clearly, on regular architectures (like rings or lattices),
the emergence of patterns can be easily assessed. In more intri-
cately connected systems, such collective states have been
described only for simple cases such as synchronization [12].
Over the last years, some progress has been made in extending

the concept of patterns on graphs to more general forms of dyna-
mics, for example, to reaction–diffusion systems [13] and to a
wave-like organization of excitable dynamics around hubs [14].

(b) Merging the perspectives of pattern formation and
complex networks

Very much in the light of Nakao & Mikhailov [13] and
Müller-Linow et al. [14], we want to understand what the net-
work equivalents of classical spatio-temporal patterns are,
and how, for example, the presence of hubs and modules
in networks relates the processes behind spatio-temporal
patterns to the theory of complex systems.

In Müller-Linow et al. [14], it was shown that different
topological features of complex networks, such as node cen-
trality and modularity, organize the synchronized network
function at different levels of spontaneous activity. Essen-
tially, two types of correlations between network topology
and dynamics were observed: waves propagating from cen-
tral nodes and module-based synchronization. These two
dynamic regimes represent a graph-equivalent to classical
spatio-temporal pattern formation. Remarkably, the dynamic
behaviour of hierarchical modular networks can switch from
one of these modes to the other as levels of spontaneous
network activation change.

In addition, several other studies have attempted to relate
notions of spatio-temporal pattern formation with dynamics
on graphs. Wang et al. [15] emphasized that a certain form of
noise-induced pattern formation, spatial coherence resonance,
is suppressed by the presence of long-ranging shortcuts and, in
general, a small-world network architecture. Liao et al. [16]
rediscovered the target waves around hub nodes previously
described by Müller-Linow et al. [14]. They emphasized that
large portions of the graph can be enslaved by such patterns
(see also [17,18]). The interesting phenomenon of synchro-
nization waves described by Leyva et al. [19] resorts to an
embedding of the network in real space. Synchronization
waves in this context are characterized by the degree of
information transmission.

The waves-to-sync transition in hierarchical graphs (con-
centric waves around hubs are gradually substituted by
synchronous activity within modules) with an increasing rate
of spontaneous activity (as described by Müller-Linow et al.
[14]) is one example of such collective modes selected for and
stabilized by the graph’s topology and dynamical parameters.
The dominant (and functionally important) feature of hierarchi-
cal graphs is that hierarchy (independently of its exact definition)
shapes every topological scale. Other graph properties (such
as modularity or a broad degree distribution) typically reside
on a single scale. Therefore, potentially a large number of self-
organized, collective modes can ‘lock tot’ hierarchical topologies.
We argue that this ‘versatility’ of hierarchical networks is the
main reason for their ubiquity in biological systems.

(c) Essential aspects of the organization of brain
networks

Brain networks can show features of different prototype net-
works (figure 1). For example, an individual brain network
might possess properties of small-world, modular or hierarch-
ical networks. Network topology might also differ at different
scales of network organization, for instance, showing random
or regular axonal connectivity at the scale of small neuronal
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populations and modular connectivity for cortico-cortical fibre
tracts [26]. Generally, however, biological neural networks do
not conform completely to any of such benchmark networks.
Instead, they combine different topological features, including
a non-random degree distribution, the existence of network
modules as well as the hierarchical combination of such fea-
tures at different scales of organization. These features are
reviewed in the following paragraphs.

(i) Heterogenous degree distribution
The term random network typically refers to Erdös-Rényi
random networks [27], in which potential connections
between nodes are established with a probability p. This
probability, for a sufficiently large network, is equivalent to
the edge density of the network; that is, the connection den-
sity. In the creation of random networks, the process of
establishing connections resembles flipping a coin where an
edge is established with probability p (and not established
with probability q ¼ 1 2 p). Thus, the distribution of node-
degrees follows a binomial probability distribution. Neural
networks, however, also contain highly connected nodes, or
hubs, that are unlikely to occur in random networks.
Examples for such highly connected hubs are subcortical
structures, such as the amygdala and hippocampus or corti-
cal structures, such as the frontal eye field and the lateral
intraparietal region [28,29]. Therefore, neural systems have
a heterogeneous degree distribution containing hubs and
share some of the features of scale-free networks [28,30].

(ii) Modules
Another near-ubiquitous feature of brain networks is the occur-
rence of modules, within which network nodes are more

frequently or densely linked than with the rest of the network
[24,31]. Modularization may be a consequence of the increasing
specialization and complexity of neural connectivity in larger
brain networks [32]. Sensory organs and motor units require
functional specialization, which begins with the spatial aggre-
gation of neurons into ganglia or topologically into modules
(figure 1c), as in the roundworm Caenorhabditis elegans
[33–35]. For the cortical network of the cat (figure 1f ), modules
correspond to large-scale functional units for fronto-limbic,
somatosensory-motor, auditory and visual processing. Spatial
and topological modules do not necessarily overlap [36], how-
ever both tend to be well connected internally, with fewer
connections to the rest of the network. There exists a wide
range of different algorithms to detect clusters of a network
(e.g. [24,37,38]).

(iii) Hierarchy
Another reflection of network complexity is the combination,
or encapsulation, of topological features at different scales of
network organization, which may be termed hierarchy. For
example, small modules may be encapsulated in larger
modules, which in turn may be contained in even larger mod-
ules, resulting in hierarchical modular networks (figure 1d)
[39,40]. One example of such hierarchical modularity is the
cortical visual system of the non-human primate, the rhesus
macaque monkey. Here, the visual module consists of two
network components (figure 1g): the dorsal pathway for pro-
cessing object movement and the ventral pathway for
processing objects features such as colour and form
[23,24,41]. Alternative concepts of network hierarchy exist
that are based on a sequential network organization or a
local versus global access of network nodes (such as in
networks with hubs).

(a) (b) (c) (d)

(e) ( f ) (g) (h)

Figure 1. Prototype network topologies and brain connectivity examples. (a) Erdös-Rényi random network. (b) Regular or lattice network with dense connectivity
between neighbours. (c) Modular network with two modules. (d ) Hierarchical modular network with two modules consisting of two sub-modules each. (e) Rat
thalamocortical network of 23 brain regions [20]. ( f ) Cat connectivity among 55 cortical and subcortical regions [21,22]. (g) Connectivity among 30 regions of the
primate (macaque monkey) visual cortex [23,24]. (h) Connectivity among 33 human brain regions (left hemisphere) based on DSI [25]. In all panels, regional nodes
are arranged on a circle, with node colour indicating the degree of the node, that is, the number of its connections (light grey: low degree; dark grey: high degree).
Nodes are arranged as to minimize the step distance along the circle between connected nodes, thus also indicating regions of densely connected network modules
(module borders are indicated through bars outside the circle).
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Out of these topological features, hierarchy, though poorly
conceptualized at the moment, is particularly interesting.
Hierarchical organization is an essential attribute of complex
biological networks. It implies across-scales information
exchange between local signal processing and global inte-
gration [42]. Moreover, hierarchy is linked to aspects of top-
down control, regulation and efficiency (e.g. [2,43,44) and
can hint on developmental principles at evolutionary and onto-
genetic scales. For example, gene duplication and area
specialization have been discussed as generators of hierarchical
neural systems. While there has been impressive progress in
understanding biological systems at each hierarchical level
(e.g. modelling of single neurons, neuroimaging of the whole
brain), the across-scales organization of these systems (i.e.
how properties on one scale imply functional features on
another scale) is much less well understood, but see Breakspear
& Stam [45]. In general, hierarchical network features have been
rarely analysed and are only poorly understood at the moment.

2. Observations: features of dynamic patterns in
complex brain networks

(a) Benchmark networks, brain connectivity examples
and model dynamics

We show four different examples for structural brain networks
(figure 1e–h), two of which are analysed below regarding the
link between topology and dynamics: first, the rat thalamocor-
tical network of 23 cortical and subcortical regions based
on tract-tracing studies [20]; second, the cat brain network of
55 cortical and subcortical regions based on tract-tracing
[24,31,46]; third, the rhesus monkey network of 30 brain
regions of the visual cortex, excluding the less well-character-
ized areas Medial Dorsal Parietal and Medial Intraparietal,
based on tract-tracing [23,24]; and finally, the network of 33
human cortical regions in the left hemisphere based on diffu-
sion spectrum imaging (DSI) [25]. For visualization purposes,
all nodes were arranged such that the step distance along a
circle was minimized for connected nodes, resulting in the
modular grouping of densely interconnected sets of nodes [31].

Patterns arising in these networks are explored with two
different simple dynamics, a reaction–diffusion system and a
basic excitable model.

(b) An example of network-shaped self-organized
dynamics: turing patterns on graphs

Let us start with a thought experiment based upon Turing pat-
terns arising in one-dimensional reaction–diffusion systems.
In particular, let us consider these patterns established on a
discretized one-dimensional system, that is, a (closed) chain
of elements.

In order to study such dynamics on arbitrary networks, we
here resort to a cellular automaton representation of reaction–
diffusion dynamics, similar to the one discussed by Young [47].
The update rule for each node is given by

xi(tþ 1) ¼ Q H þW1
X

d(i,j)#r1

xj(t)þW2
X

r1#d(i,j)#r2

xj(t)

0

@

1

A,

(2:1)

where d(i,j) denotes the (topological) distance between nodes i
and j and Q(x) yields 1 for x . 0 and 21 otherwise. The quan-
tity H can be considered as an external field biasing the balance
of activator (þ1) and inhibitor (21) states. Figure 2a sketches the
interaction potential underlying the system from equation (2.1),
characterized by the range r1 and strength W1 of the activator
and the range r2 and strength W2 of the inhibitor. An example
of the patterns arising in this system is shown in figure 2b.
Starting from random initial conditions, rapidly a pattern of
alternating spatial regions dominated by the activator (white)
and the inhibitor (blue), respectively, emerges.

This is a striking feature of Turing patterns: in spite of the
spatial isotropy, some neighbouring elements are in identical
states, whereas others display sharp differences. Here, the
dynamics self-organize on a spatially homogeneous system
(a chain ‘network’).

The overlay of 100 such asymptotic patterns (figure 3a)
shows that each spatial site is equally likely to host any of
these two regions.

Let us now disrupt the spatial homogeneity by adding a few
long-ranging shortcuts. We see (figure 3b) that the range of poss-
ible patterns self-organizing on these systems becomes confined
by the spatial inhomogeneities. This is the general phenomenon
we would like to call network-shaped self-organization.

Figure 4 shows the result of activator–inhibitor dynamics
(as given by equation (2.1)) on the empirical networks from
figure 1, that means, for rat, cat, macaque and human. The

distance

po
te

nt
ia

l

space (node number) 

tim
e 

(a) (b) 

r2r1

W2

W1

0

Figure 2. Cellular automation model of a reaction – diffusion system: (a) interaction potential of elements as a function of the distance (adapted from Young [47]);
(b) example of a pattern arising in a one-dimensional system (a ring graph); blue: high inhibitor, white: high activator. Parameters are: r1 ¼ 1, r2 ¼ 3, W1 ¼ 1,
W2 ¼ 20.3, H ¼ 3 Q4. (Online version in colour.)
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two main observations are that (i) the phenomenon of net-
work-guided self-organization is also seen in the network
topologies derived from empirical data and (ii) apparently,

the confinement of patterns is not trivially linked to select
topological features (degree, modularity, etc.), but rather
seems to arise from the interplay of several of these features.

(a) (b) 

Figure 3. On the inside, the network is represented ((a): 100-node ring graph, representing a regular one-dimensional space with periodic boundary conditions;
(b): small-world graph obtained from (a) by adding 10 random shortcuts). Around the network, the asymptotic high-activator (white) and high-inhibitor (black) regions
are shown as rings for 100 runs, each starting from random initial conditions. The outside ring represents the activator – inhibitor asymmetry (number of runs with high
activator minus number of runs with high inhibitor computed across the 100 runs shown) for each node. While the patterns average out on the ring graph (a), the shortcuts
select certain topology-compatible modes, leading to systematic high-activator and high-inhibitor regions (b). Parameter values are the same as in figure 2. The
representation of asymptotic states arranged around the network is the same as indicated below the space – time plot in figure 2b. (Online version in colour.)

(a) (b)

(c) (d )

Figure 4. Simulation of network dynamics with the same layout as for figure 3, but for the empirical networks shown in figure 1e – h: (a) rat thalamocortical
network, (b) cat cortical network, (c) macaque visual cortex and (d ) human cortical network (left hemisphere). (Online version in colour.)
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(c) Influence of specific topological features on
excitable network dynamics

In a range of previous investigations on excitable dynamics on
graphs [14,48–50], we have identified several examples of
network-shaped self-organization and, in particular, specific
topological features serving as ‘organizers’ of self-organized
dynamical modes.

In the following, we illustrate some of these topological
organizers, particularly hubs, modules and network hierarchy.

We use a three-state cellular automaton model of excitable
dynamics, representing a stylized biological neuron or popu-
lation. The model has been termed SER model, as each node
can be in an susceptible/excitable (S), active/excited (E) or
refractory (R) state. The model operates on discrete time
and employs the following synchronous update rules.

A transition from S to E occurs, when at least one neigh-
bour of the S state node is active. After one time step in the
state E, a node enters the state R. The transition from R to S
occurs stochastically with the recovery probability p, leading
to a geometric distribution of refractory times with an aver-
age of 1/p. The model may also include spontaneous
transitions from S to E with a probability f (e.g. [14,48,49]).

In Hütt et al. [50], a model variant with a relative excita-
tion threshold was used. For a node i with ki neighbours, the
transition from S to E occurs, when at least kki neighbours
are active. The parameter k, thus, serves as a relative excitation
threshold. In such a relative-threshold scenario, low-degree
nodes are easier to excite (requiring a smaller number of
neighbouring excitations) than high-degree nodes.

For p ¼ f ¼ 1, we have a deterministic model, which was
investigated in detail in Garcia et al. [18], where the role of
cycles in storing excitations and supporting self-sustained
activity was elucidated. The respective influence of hubs
(high-degree nodes) and modules in shaping activation pat-
terns has been investigated with a focus on spontaneous
excitations [14,49]. By determining the length of unperturbed
propagation of excitations, such spontaneous excitations
select the ‘topological scale’, on which such patterns can be
systematically formed. Relatedly, a phenomenon of stochastic
resonance (noise-facilitated signal propagation) has been evi-
denced in so-called ‘sub-threshold’ networks, that is, for
which a single input excitation does not propagate to the
output nodes [50].

The discrete dynamics facilitate a discussion of how exci-
tation patterns are shaped by topological features, due to the
possibility of exhaustively mapping all system states and the
feasibility of computing large numbers of network and par-
ameter variations. The approach allowed us to qualitatively
assess contributions to functional connectivity and the
relationship between structural and functional connectivity.

Let xi(t) [ {S, E, R} be the state of node i at time t. It is
convenient to discuss the excitation pattern instead

ci(t) ¼
1, xi(t) ¼ E
0, xi(t) ¼ S _ R

!
:

In this way, we can define a co-activation matrix,

Cij ¼
X

t
ci(t)cj(t),

as well as a time-delayed co-activation matrix (or signal

propagation matrix),

C(þ)
ij ¼ Ci!j ¼

X

t
ci(t)cj(tþ 1):

Figures 5 and 6 compare several minimal topological situ-
ations in the context of possible contributions to these matrices.

Figure 5a shows a three-chain with an excitation entering
at the middle node, leading to a joint excitation at the other
two nodes and, consequently, a contribution to Cij. Even
though other entry points of excitations, as well as an embed-
ding of this small network ‘motif’ into a larger network lead
to a multitude of other contributions to both, Cij and Ci!j, we
can nevertheless deduce that common neighbours lead to an
increase in synchronous activity. When a link is added to the
two nodes under consideration (thus moving from a three-
chain to a three-node loop), the sequential excitation of the
two nodes becomes possible (in addition to the previous
modes), thus allowing for a contribution to Ci!j.

Figure 5c illustrates a more sophisticated contribution to
network-shaped self-organization, namely the enslavement
of nodes by periodic activity of short cycles. This phenomenon
has been analysed in detail in Garcia et al. [18].

(i) Heterogeneous degree distribution
A heterogeneous degree distribution means that some nodes
have more connections than others, resulting in the occur-
rence of hubs, which also have characteristic dynamic
features. First, hubs are more active than low-degree nodes.
Second, Garcia et al. [18] showed that the node degree is
linked to the directed propagation of activity: high-degree
nodes (hubs) act as ‘senders’, whereas low-degree nodes act
predominantly as ‘receivers’ of activity. The reasons for this
behaviour are indicated in figure 6. The figure illustrates the
minimal topological mechanism of how propagating waves
organize around hubs (as explored by Müller-Linow et al.
[14]): single incoming excitations at a hub are amplified and
spread out in a time-synchronous fashion. On a long time
scale, the overlay of many such events leads to substantial
contributions to Cij in cases, where nodes i and j have the
same distance from the hub.

(ii) Modules
In sparsely connected graphs, events of apparent transfer
of activity between nodes correspond to actual causal transfers.

(a) (b) 

(c) 

Figure 5. Schematic of the minimal topological situations underlying co-
activation of nodes: (a) co-activation by a common neighbour, (b) sequential
activation due to direct links and (c) enslavement of nodes by a short (here:
three-node) cycle. (Online version in colour.)
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In such graphs, there may exist a correlation or even anti-
correlation between structural links and co-activations, depend-
ing on the parameters of the specific dynamic model. For
instance, in the simple deterministic SER model outlined above,
sparse random graphs show an anti-correlation between struc-
tural links and co-activations [18]. In denser networks, not all
apparent transfers of activity correspond to actual causal trans-
fers. In particular, in dense local neighbourhoods of networks,
that is, within modules, the local (anti-)correlation between
links and co-activations becomes reshaped by the larger scale net-
work features. Specifically, common input of activity from within
the same modules results in modular co-activations and appear-
ance of correlation between pairwise links and co-activations
[18]. This is an important finding, because it suggests that the fre-
quently made observation between structural and functional
links in brain connectivity [51,52] is primarily induced by the
modular organization of such networks.

(iii) Hierarchy
Hierarchy can be expressed by different topological features of
a network, such as a combination or encapsulation of features,
or sequential arrangements of connectivity. Consequently,
there may be different ways in which hierarchy shapes neural
dynamics. For example, in hierarchical networks combining
modular and hub features, one can observe either hub- or
module-driven dynamics of the kind discussed above. These
dynamics switch depending on the amount of spontaneous
node activation or noise in the system [14]. Therefore, this par-
ticular hierarchical arrangement provides a transition between
different dynamic regimes.

Neural systems are implicitly and explicitly hierarchical.
They are explicitly hierarchical, because in many cases the func-
tional components are spread over many scales in space and
time (e.g. single ion channels up to brain areas). They are
implicitly hierarchical, because their organization and underlying
interaction patterns (at a specific spatial or temporal scale) often
have a nested and layered structure. This implicit hierarchical
organization (the network-related hierarchy) has been impli-
cated in a variety of optimal behaviours and dynamic
functions by merging different topological features (e.g.

modularity and integration). Moreover, hierarchy is related to
the compressibility of random walks [53], to the coexistence of
time scales [12], to the range of possible responses upon stimu-
lation [14] and to the storage of patterns in the networks [54].
The impact a hierarchical structure leaves in dynamical pro-
cesses can qualitatively be described as multi-scale patterns:
the distribution of dynamical values across the graph remains
invariant under topological coarse-graining (or, more specifi-
cally, it obeys well-defined scaling relationships, when such
coarse-graining is performed iteratively [44]).

More generally, hierarchical (modular) networks facilitate
network-sustained activity [40,55,56], which is a precondition
for criticality. The link between network topology and criti-
cality can be made explicit via the topological dimension,
which is finite for some (in particular, sparse) hierarchical
modular networks, resulting in expanded parameter regimes
for criticality, so-called Griffiths phases [57].

3. Conclusion
(a) A new perspective of neural network dynamics
If the brain were a lattice, neural activity would necessarily pro-
duce rich and diverse spatio-temporal patterns, such as spiral
waves, synchronous oscillations and concentric waves emanat-
ing from periodically firing pacemakers. Noise would be able
to interact with the deterministic dynamics to produce coherent
activity from, for instance, subthreshold activity. The system
would, thus, display noise-facilitated, noise-induced and
noise-sustained patterns, according to well-established prin-
ciples of self-organizing patterns. Quite obviously, the brain
is not a lattice. Neither can a random graph serve as a plausible
representation of the intricate overlay of structural elements on
all scales observed in real biological neural networks.

Here, we have formulated a new perspective on neural
dynamics by drawing on concepts of spatio-temporal pattern
formation. The heterogeneous network architecture is then
viewed as a structural property confining patterns to few poss-
ible, network-compliant modes. Typical network analyses
highlight and investigate deviations from random graphs.

(a) (b) 

Figure 6. Schematic of the minimal topological situations leading to ring waves around hubs: (a) an incoming excitation activates the hub and leads to a sub-
sequent excitation of all susceptible nearest neighbours; (b) susceptible nodes with a distance of 2 from the hub are then synchronously activated in the following
time step. (Online version in colour.)
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Our perspective draws the attention to the deviations from
regular graphs, as these deviations are the pattern-confining
structural elements.

(b) Specific implications for understanding brain
dynamics

What concrete evidence exists for network-guided self-
organization in neurobiological data?

Based on the topological ingredients discussed above and
the subsequent detailed analysis of different dynamical pro-
cesses on graphs, the notion of network-guided pattern
formation points to several building blocks of excitation patterns
relevant to neural dynamics and shaped by network topology:

(1) hubs leading to the propagation of waves [14],
(2) modules leading to localized synchronization, which in

turn results in a strong agreement between structural
and functional connectivity (as discussed by Garcia
et al. [18]); and

(3) hierarchical network organization with the potential of
facilitating self-sustained activity, criticality, as well as
transitions between different dynamical behaviours (see,
in particular, Müller-Linow et al. [14] for the latter point).

Indeed, characteristic spatio-temporal patterns and their
implications for functional neural dynamics have been demon-
strated in different models of biological neural networks as
well as for empirical data. For instance, in the large-scale thala-
mocortical model of Izhikevich & Edelman [58], the authors
describe the emergence of waves and rhythms on different
scales. Additional empirical examples are spreading depression

waves associated with retinal migraine [59] and spiral wave
dynamics in the neocortex [60].

The spatial embedding of the networks can be a principal
factor for the arising patterns: activity is spreading to nearby
or adjacent patches of neural tissue, in which case networks
form a grid or lattice on the brain surface [61]. Qualitatively
speaking, patterns are observed in spite of the network, rather
than due to the network. By contrast, the phenomenon dis-
cussed in this paper addresses the possibility of self-organized
patterns where spatial embedding is not the determining
factor of the dynamic behaviour. In biological terms, connec-
tions might link distant brain regions disturbing spatially
localized dynamics [36,62]. Moreover, these long-distance con-
nections might not even affect delays for activity diffusion
due to increased axon diameter or myelination [63]. In these
cases, the network topology as such dictates the permissible
self-organized patterns.

The most striking example of network-guided self-
organization has been discussed in Moretti & Munoz [57],
where network heterogeneity generates regions in the network
with long activity transients (see also [64,65]). In Moretti &
Munoz [57], such Griffiths phase dynamics were suggested
as a mechanism for self-sustained activity and critical dynami-
cal states that do not require a careful parameter tuning. Similar
to the Turing patterns arising from reaction–diffusion
dynamics and the excitation waves around hubs discussed
above, these dynamics are (less regular) forms of collective
dynamic behaviours emerging from local interactions.

Criticality is one example of pattern-like self-organized
collective dynamics. The importance of critical dynamical
states, associated with power-law distributions of activity,
has been intensely debated in neuroscience (e.g. [66,67]).
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Figure 7. Cortical connectivity of the cat (a – c) macaque visual cortex (d – f ), together with the resulting activation patterns. Column (a,d ): adjacency matrix (intra-
module links are represented in black and inter-module links are represented in grey). Column (b,e): average co-activation matrix Cij binarized with a threshold of
0.46. Column (c,f ): time-delayed co-activation (or signal propagation) matrix Ci!j binarized with a threshold of 0.28. Figure adapted from Garcia et al. [18].
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Remarkably, the network prerequisites discussed for Grif-
fiths phase dynamics and a resulting expanded parameter
range for criticality (in particular, a specific ‘spectral fingerprint’
[57] which can be directly computed from the adjacency matrix)
are similar to the requirements for Turing instability on graphs
[13] and the synchronizability of graphs [68].

A series of observations on the agreement of structural and
functional connectivity recently established using a simple
model of excitable dynamics on graphs [18] provides further
evidence for network-guided self-organization, in particular,
the observation that modules enhance the match between
structural and functional connectivity in the (dense) modules,
while a broad degree distribution tends to reduce the match
due to the organization of activity around hubs. Figure 7, as
well as the discussions by Garcia et al. [18] provide detailed
accounts of these associations. The effects captured by the sche-
matic representations of local dynamics shown in figures 6
and 5 are the underlying microscopic mechanisms for the
coactivation patterns observed in figure 7.

Modular node activations, and anti-correlations of
different modules, are a prominent and conspicuous feature
of functional neural dynamics (e.g. Fox et al. [69]). They
have been reproduced in a variety of large-scale com-
putational modes (e.g. [70,71]). Our thinking suggests that

this phenomenon may primarily result from the spatio-
temporal pattern formation in modular neural networks,
rather than depend on particular parameters of the local
node dynamics.

As a further example, in Hütt et al. [50], it has been
observed that signal coherence (measured by the amount
of interdependent excitations) is enhanced by noise in a
resonant fashion, with noise being provided by sponta-
neous excitations. This collective effect is similar to the
well-known phenomenon of spatio-temporal stochastic
resonance [72].

Finally and generally, the structural ingredients of self-
sustained activity have been intensely discussed over the
last years (e.g. Deco et al. [71,73]). Network-guided self-
organization may provide a promising novel framework for
better understanding the network requirements for such
collective dynamic states of neuronal activity.
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