rstb.royalsocietypublishing.org

1

2

3

4

5

6

7

8

9

10

11

12

13 14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32 33

34

35

Cite this article: Hütt M-T, Kaiser M, Hilgetag CC. 2014 Perspective: network-guided pattern formation of neural dynamics. Phil. Trans. R. Soc. B 20130522. http://dx.doi.org/10.1098/rstb.2013.0522

One contribution of 12 to a Theme Issue 'How does complex network theory help to understand the brain?'.

Subject Areas:

neuroscience, theoretical biology

Keywords:

brain connectivity, hierarchy, modularity, network analysis, brain evolution, 36

3**D** turing patterns, self-organization

38 39

40

41

42

43 44

45

46

47

48

49

50

51

52

53 54

55

56

57

58

59 60

61

Author for correspondence:

Marc-Thorsten Hütt

e-mail: m.huett@jacobs-university.de

Perspective: network-guided pattern formation of neural dynamics

Marc-Thorsten Hütt¹, Marcus Kaiser^{2,3} and Claus C. Hilgetag^{4,5}

¹School of Engineering and Science, Jacobs University Bremen, Bremen, Germany ²School of Computing Science, Newcastle University, Claremont Tower, Newcastle upon Tyne NE1 7RU, UK ³Institute of Neuroscience, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK ⁴Department of Computational Neuroscience, University Medical Center Eppendorf, Hamburg, Germany 5 Department of Health Sciences, Boston University, Boston, MA, USA

The understanding of neural activity patterns is fundamentally linked to an understanding of how the brain's network architecture shapes dynamical processes. Established approaches rely mostly on deviations of a given network from certain classes of random graphs. Hypotheses about the supposed role of prominent topological features (for instance, the roles of modularity, network motifs or hierarchical network organization) are derived from these deviations. An alternative strategy could be to study deviations of network architectures from regular graphs (rings and lattices) and consider the implications of such deviations for self-organized dynamic patterns on the network. Following this strategy, we draw on the theory of spatio-temporal pattern formation and propose a novel perspective for analysing dynamics on networks, by evaluating how the self-organized dynamics are confined by network architecture to a small set of permissible collective states. In particular, we discuss the role of prominent topological features of brain connectivity, such as hubs, modules and hierarchy, in shaping activity patterns. We illustrate the notion of network-guided pattern formation with numerical simulations and outline how it can facilitate the understanding of neural dynamics.

1. Background: self-organized dynamic patterns in complex brain networks

A wide range of biological systems are organized in a network-like fashion. Accordingly, the large and diverse field of network science has since its very beginning resorted to biological examples to motivate, propose and refine methods for the analysis of complex networks (e.g. [1-3]). In this way, network science has become a new important paradigm for the understanding of biological systems. Clearly, one of the most fascinating examples of a biological network is the brain. The way in which the brain's network topology shapes, organizes and constrains dynamical processes has received a great amount of attention in recent years and has provided new perspectives in theoretical neuroscience [4,5].

Another diversely explored paradigm for the understanding of biological systems is the concept of self-organized patterns, where collective modes of the system emerge from the local interactions of components (e.g. [6]). Diverse forms of distributed computation and global organization are implemented in biological systems via such local interactions, from the rich ornaments of seashells and the diversity of animal coat patterns to the myriad of fractal structures in biology and pattern-forming colonies of bacteria. Particularly fascinating are patterns changing with time, resulting in spatio-temporal patterns, such as propagating waves and aggregation streams. Bacteria form large branched and nested aggregation-like patterns to immobilize themselves against water flow (see Levine & Ben-Jacob [7] for a review of various such forms of pattern formation). The individual amoeba in Dictyostelium discoideum colonies initiates a transition to a collective multicellular state via a quorum-sensing form of communication: a cAMP signal

propagating through the community in the form of spiral waves
and the subsequent chemotactic response of the cells lead
to branch-like aggregation streams (e.g. [8–10]). So far, however, these patterns have been mostly discussed for regular
interaction architectures, such as lattices.

69 In this review, we explore a novel view where these two 70 paradigms, network science on the one hand and self-71 organized pattern formation on the other, are functionally 72 integrated. We discuss some recent findings regarding dynami-73 cal processes in topologically complex brain networks, to 74 demonstrate the occurrence of pattern formation guided by the 75 characteristic network architecture. Furthermore, we illustrate 76 with a few simple examples that network-guided pattern forma-77 tion is a universal and unifying approach for understanding a 78 heterogeneous set of observations about neural dynamics in 79 structured graphs. Our goal, thus, is to provide the first steps 80 in a unifying framework for these diverse perspectives, explain-81 ing how dynamics and topology are tuned in a synergistic 82 fashion via network-guided biological self-organization.

83 We focus on the organization of excitable dynamics on 84 graphs. On regular graphs (i.e. rings and lattices), the natural 85 approach of describing dynamical processes is by resorting to 86 the language of large-scale spatio-temporal patterns emerging 87 from local interactions in a self-organized fashion. The exact 88 layout of the patterns is typically determined by random fluc-89 tuations or by systematic differences between the nodes of the 90 graph. Here, we show that on a graph with less regularity, pat-91 terns can be confined by the network architecture to a few 92 network-compatible modes. This phenomenon of network-93 guided pattern formation can facilitate the interpretation of 94 neural dynamics.

95 The logic of this paper is as follows. First, we describe 96 some fundamental topological features of brain networks 97 that have received attention over the last few years, in par-98 ticular, their heterogeneous degree distribution, resulting in 99 the existence of hubs; as well as modules and a hierarchical 100 organization of networks. Next, we introduce two minimal 101 dynamical models, helping us to probe these dynamics 102 for the phenomenon of network-guided pattern formation, 103 specifically, reaction-diffusion dynamics as the prototype 104 of pattern-forming dynamical systems, and a simple three-105 state model of excitable dynamics, which has been employed 106 in various systems for studying the interplay of network top-107 ology and dynamics. Finally, we attempt to derive from these 108 observations some tentative general conclusions for the 109 organization of brain dynamics.

110 111

(a) Theories of spatio-temporal pattern formation

¹¹³ Theories of spatio-temporal pattern formation have contributed ¹¹⁴ fundamentally to a deep understanding of natural processes, ¹¹⁵ particularly in biology. One striking example is Turing's con-¹¹⁶ cept of reaction-diffusion processes, which has a vast range ¹¹⁷ of applications—from biology to social systems [11]. At the ¹¹⁸ same time, these theories (or classes of models) are well ¹¹⁹ embedded in the broader framework of self-organization.

Self-organization is the emergence of large-scale patterns,
based on collective dynamical states, from local interactions.
Clearly, on regular architectures (like rings or lattices),
the emergence of patterns can be easily assessed. In more intricately connected systems, such collective states have been
described only for simple cases such as synchronization [12].
Over the last years, some progress has been made in extending

the concept of patterns on graphs to more general forms of dynamics, for example, to reaction–diffusion systems [13] and to a wave-like organization of excitable dynamics around hubs [14].

(b) Merging the perspectives of pattern formation and complex networks

Very much in the light of Nakao & Mikhailov [13] and Müller-Linow *et al.* [14], we want to understand what the network equivalents of classical spatio-temporal patterns are, and how, for example, the presence of hubs and modules in networks relates the processes behind spatio-temporal patterns to the theory of complex systems.

In Müller-Linow *et al.* [14], it was shown that different topological features of complex networks, such as node centrality and modularity, organize the synchronized network function at different levels of spontaneous activity. Essentially, two types of correlations between network topology and dynamics were observed: waves propagating from central nodes and module-based synchronization. These two dynamic regimes represent a graph-equivalent to classical spatio-temporal pattern formation. Remarkably, the dynamic behaviour of hierarchical modular networks can switch from one of these modes to the other as levels of spontaneous network activation change.

In addition, several other studies have attempted to relate notions of spatio-temporal pattern formation with dynamics on graphs. Wang *et al.* [15] emphasized that a certain form of noise-induced pattern formation, spatial coherence resonance, is suppressed by the presence of long-ranging shortcuts and, in general, a small-world network architecture. Liao *et al.* [16] rediscovered the target waves around hub nodes previously described by Müller-Linow *et al.* [14]. They emphasized that large portions of the graph can be enslaved by such patterns (see also [17,18]). The interesting phenomenon of synchronization waves described by Leyva *et al.* [19] resorts to an embedding of the network in real space. Synchronization waves in this context are characterized by the degree of information transmission.

The waves-to-sync transition in hierarchical graphs (concentric waves around hubs are gradually substituted by synchronous activity within modules) with an increasing rate of spontaneous activity (as described by Müller-Linow *et al.* [14]) is one example of such collective modes selected for and stabilized by the graph's topology and dynamical parameters. The dominant (and functionally important) feature of hierarchical graphs is that hierarchy (independently of its exact definition) shapes every topological scale. Other graph properties (such as modularity or a broad degree distribution) typically reside on a single scale. Therefore, potentially a large number of selforganized, collective modes can 'lock tot' hierarchical topologies. We argue that this 'versatility' of hierarchical networks is the main reason for their ubiquity in biological systems.

(c) Essential aspects of the organization of brain networks

Brain networks can show features of different prototype networks (figure 1). For example, an individual brain network might possess properties of small-world, modular or hierarchical networks. Network topology might also differ at different scales of network organization, for instance, showing random or regular axonal connectivity at the scale of small neuronal

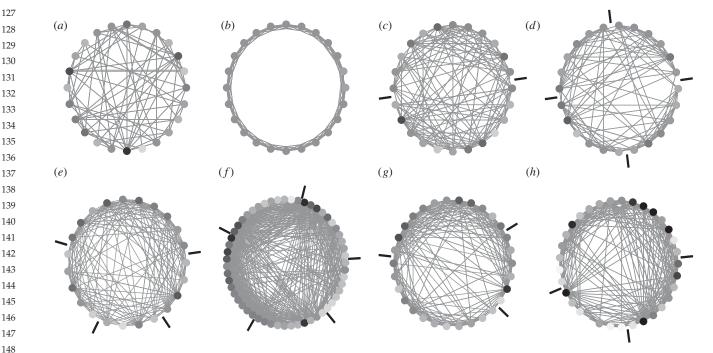


Figure 1. Prototype network topologies and brain connectivity examples. (a) Erdös-Rényi random network. (b) Regular or lattice network with dense connectivity between neighbours. (c) Modular network with two modules. (d) Hierarchical modular network with two modules consisting of two sub-modules each. (e) Rat thalamocortical network of 23 brain regions [20]. (f) Cat connectivity among 55 cortical and subcortical regions [21,22]. (g) Connectivity among 30 regions of the primate (macaque monkey) visual cortex [23,24]. (h) Connectivity among 33 human brain regions (left hemisphere) based on DSI [25]. In all panels, regional nodes are arranged on a circle, with node colour indicating the degree of the node, that is, the number of its connections (light grey: low degree; dark grey: high degree). Nodes are arranged as to minimize the step distance along the circle between connected nodes, thus also indicating regions of densely connected network modules (module borders are indicated through bars outside the circle).

populations and modular connectivity for cortico-cortical fibre tracts [26]. Generally, however, biological neural networks do not conform completely to any of such benchmark networks. Instead, they combine different topological features, including 160 a non-random degree distribution, the existence of network modules as well as the hierarchical combination of such features at different scales of organization. These features are reviewed in the following paragraphs.

(i) Heterogenous degree distribution

167 The term random network typically refers to Erdös-Rényi 168 random networks [27], in which potential connections 169 between nodes are established with a probability p. This 170 probability, for a sufficiently large network, is equivalent to 171 the edge density of the network; that is, the connection den-172 sity. In the creation of random networks, the process of 173 establishing connections resembles flipping a coin where an 174 edge is established with probability p (and not established 175 with probability q = 1 - p). Thus, the distribution of node-176 degrees follows a binomial probability distribution. Neural 177 networks, however, also contain highly connected nodes, or 178 hubs, that are unlikely to occur in random networks. 179 Examples for such highly connected hubs are subcortical 180 structures, such as the amygdala and hippocampus or corti-181 cal structures, such as the frontal eye field and the lateral 182 intraparietal region [28,29]. Therefore, neural systems have 183 a heterogeneous degree distribution containing hubs and 184 share some of the features of scale-free networks [28,30]. 185

(ii) Modules

186

187

149

150

151

152

153

154

155 156

157

158

159

161

162

163

164

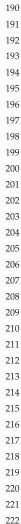
165

166

188 Another near-ubiquitous feature of brain networks is the occur-189 rence of modules, within which network nodes are more frequently or densely linked than with the rest of the network [24,31]. Modularization may be a consequence of the increasing specialization and complexity of neural connectivity in larger brain networks [32]. Sensory organs and motor units require functional specialization, which begins with the spatial aggregation of neurons into ganglia or topologically into modules (figure 1c), as in the roundworm Caenorhabditis elegans [33–35]. For the cortical network of the cat (figure 1*f*), modules correspond to large-scale functional units for fronto-limbic, somatosensory-motor, auditory and visual processing. Spatial and topological modules do not necessarily overlap [36], however both tend to be well connected internally, with fewer connections to the rest of the network. There exists a wide range of different algorithms to detect clusters of a network (e.g. [24,37,38]).

(iii) Hierarchy

Another reflection of network complexity is the combination, or encapsulation, of topological features at different scales of network organization, which may be termed hierarchy. For example, small modules may be encapsulated in larger modules, which in turn may be contained in even larger modules, resulting in hierarchical modular networks (figure 1*d*) [39,40]. One example of such hierarchical modularity is the cortical visual system of the non-human primate, the rhesus macaque monkey. Here, the visual module consists of two network components (figure 1g): the dorsal pathway for processing object movement and the ventral pathway for processing objects features such as colour and form [23,24,41]. Alternative concepts of network hierarchy exist that are based on a sequential network organization or a local versus global access of network nodes (such as in networks with hubs).



227

228

229

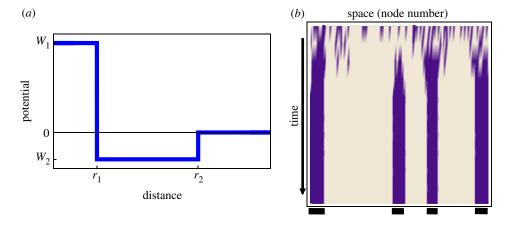
230

231

232

233

234



Phil. Trans. R. Soc. B 20130522 Q Figure 2. Cellular automation model of a reaction – diffusion system: (a) interaction potential of elements as a function of the distance (adapted from Young [47]); (b) example of a pattern arising in a one-dimensional system (a ring graph); blue: high inhibitor, white: high activator. Parameters are: $r_1 = 1$, $r_2 = 3$, $W_1 = 1$, $W_2 = -0.3$, H = 3. (Online version in colour.)

Out of these topological features, hierarchy, though poorly conceptualized at the moment, is particularly interesting. Hierarchical organization is an essential attribute of complex biological networks. It implies across-scales information exchange between local signal processing and global integration [42]. Moreover, hierarchy is linked to aspects of topdown control, regulation and efficiency (e.g. [2,43,44) and can hint on developmental principles at evolutionary and ontogenetic scales. For example, gene duplication and area specialization have been discussed as generators of hierarchical neural systems. While there has been impressive progress in understanding biological systems at each hierarchical level (e.g. modelling of single neurons, neuroimaging of the whole brain), the across-scales organization of these systems (i.e. how properties on one scale imply functional features on 223 another scale) is much less well understood, but see Breakspear 224 & Stam [45]. In general, hierarchical network features have been 225 rarely analysed and are only poorly understood at the moment. 226

2. Observations: features of dynamic patterns in complex brain networks

(a) Benchmark networks, brain connectivity examples and model dynamics

235 We show four different examples for structural brain networks 236 (figure 1e-h), two of which are analysed below regarding the 237 link between topology and dynamics: first, the rat thalamocor-238 tical network of 23 cortical and subcortical regions based 239 on tract-tracing studies [20]; second, the cat brain network of 240 55 cortical and subcortical regions based on tract-tracing 241 [24,31,46]; third, the rhesus monkey network of 30 brain 242 regions of the visual cortex, excluding the less well-character-243 ized areas Medial Dorsal Parietal and Medial Intraparietal, 244 based on tract-tracing [23,24]; and finally, the network of 33 245 human cortical regions in the left hemisphere based on diffu-246 sion spectrum imaging (DSI) [25]. For visualization purposes, 247 all nodes were arranged such that the step distance along a 248 circle was minimized for connected nodes, resulting in the 249 modular grouping of densely interconnected sets of nodes [31].

250 Patterns arising in these networks are explored with two 251 different simple dynamics, a reaction-diffusion system and a basic excitable model. 252

(b) An example of network-shaped self-organized dynamics: turing patterns on graphs

Let us start with a thought experiment based upon Turing patterns arising in one-dimensional reaction-diffusion systems. In particular, let us consider these patterns established on a discretized one-dimensional system, that is, a (closed) chain of elements.

In order to study such dynamics on arbitrary networks, we here resort to a cellular automaton representation of reactiondiffusion dynamics, similar to the one discussed by Young [47]. The update rule for each node is given by

$$x_{i}(t+1) = \Theta\left(H + W_{1} \sum_{d(i,j) \le r_{1}} x_{j}(t) + W_{2} \sum_{r_{1} \le d(i,j) \le r_{2}} x_{j}(t)\right),$$
(2.1)

where d(i,j) denotes the (topological) distance between nodes *i* and *j* and $\Theta(x)$ yields 1 for x > 0 and -1 otherwise. The quantity *H* can be considered as an external field biasing the balance of activator (+1) and inhibitor (-1) states. Figure 2a sketches the interaction potential underlying the system from equation (2.1), characterized by the range r_1 and strength W_1 of the activator and the range r_2 and strength W_2 of the inhibitor. An example of the patterns arising in this system is shown in figure 2b. Starting from random initial conditions, rapidly a pattern of alternating spatial regions dominated by the activator (white) and the inhibitor (blue), respectively, emerges.

This is a striking feature of Turing patterns: in spite of the spatial isotropy, some neighbouring elements are in identical states, whereas others display sharp differences. Here, the dynamics self-organize on a spatially homogeneous system (a chain 'network').

The overlay of 100 such asymptotic patterns (figure 3*a*) shows that each spatial site is equally likely to host any of these two regions.

Let us now disrupt the spatial homogeneity by adding a few long-ranging shortcuts. We see (figure 3b) that the range of possible patterns self-organizing on these systems becomes confined by the spatial inhomogeneities. This is the general phenomenon we would like to call *network-shaped self-organization*.

Figure 4 shows the result of activator–inhibitor dynamics (as given by equation (2.1)) on the empirical networks from figure 1, that means, for rat, cat, macaque and human. The

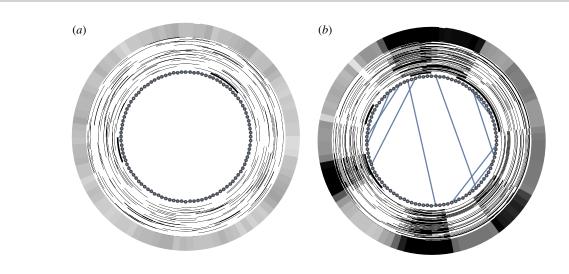


Figure 3. On the inside, the network is represented ((*a*): 100-node ring graph, representing a regular one-dimensional space with periodic boundary conditions; (*b*): small-world graph obtained from (*a*) by adding 10 random shortcuts). Around the network, the asymptotic high-activator (white) and high-inhibitor (black) regions are shown as rings for 100 runs, each starting from random initial conditions. The outside ring represents the activator – inhibitor asymmetry (number of runs with high activator minus number of runs with high inhibitor computed across the 100 runs shown) for each node. While the patterns average out on the ring graph (*a*), the shortcuts select certain topology-compatible modes, leading to systematic high-activator and high-inhibitor regions (*b*). Parameter values are the same as in figure 2. The representation of asymptotic states arranged around the network is the same as indicated below the space – time plot in figure 2*b*. (Online version in colour.)

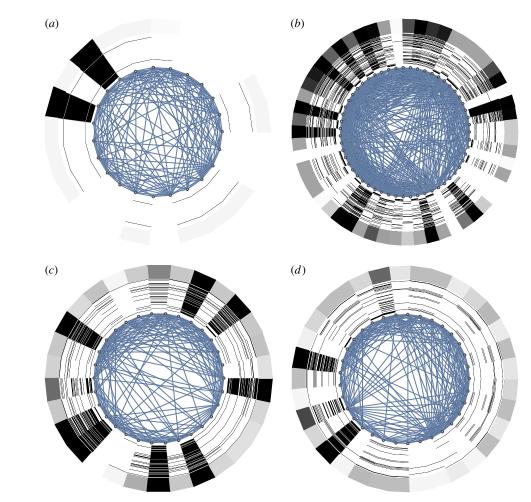


Figure 4. Simulation of network dynamics with the same layout as for figure 3, but for the empirical networks shown in figure 1e-h: (a) rat thalamocortical network, (b) cat cortical network, (c) macaque visual cortex and (d) human cortical network (left hemisphere). (Online version in colour.)

two main observations are that (i) the phenomenon of net work-guided self-organization is also seen in the network
 topologies derived from empirical data and (ii) apparently,

the confinement of patterns is not trivially linked to select topological features (degree, modularity, etc.), but rather seems to arise from the interplay of several of these features. rstb.royalsocietypublishing.org

Phil. Trans. R. Soc. B 20130522

316 (c) Influence of specific topological features on excitable network dynamics

317

318

319

320

321

322

323

324

325

326

327

329

331

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374 375

376

377 378 In a range of previous investigations on excitable dynamics on graphs [14,48-50], we have identified several examples of network-shaped self-organization and, in particular, specific topological features serving as 'organizers' of self-organized dynamical modes.

In the following, we illustrate some of these topological organizers, particularly hubs, modules and network hierarchy.

We use a three-state cellular automaton model of excitable dynamics, representing a stylized biological neuron or population. The model has been termed SER model, as each node 328 can be in an susceptible/excitable (S), active/excited (E) or refractory (R) state. The model operates on discrete time 330 and employs the following synchronous update rules.

A transition from S to E occurs, when at least one neigh-332 bour of the *S* state node is active. After one time step in the 333 state E, a node enters the state R. The transition from R to S334 occurs stochastically with the recovery probability p, leading 335 to a geometric distribution of refractory times with an aver-336 age of 1/p. The model may also include spontaneous 337 transitions from *S* to *E* with a probability f (e.g. [14,48,49]). 338

In Hütt et al. [50], a model variant with a relative excita-339 tion threshold was used. For a node *i* with k_i neighbours, the 340 transition from S to E occurs, when at least κk_i neighbours 341 are active. The parameter κ , thus, serves as a relative excitation 342 threshold. In such a relative-threshold scenario, low-degree 343 nodes are easier to excite (requiring a smaller number of 344 345 neighbouring excitations) than high-degree nodes.

For p = f = 1, we have a deterministic model, which was 346 investigated in detail in Garcia et al. [18], where the role of 347 cycles in storing excitations and supporting self-sustained 348 activity was elucidated. The respective influence of hubs 349 (high-degree nodes) and modules in shaping activation pat-350 terns has been investigated with a focus on spontaneous 351 excitations [14,49]. By determining the length of unperturbed 352 propagation of excitations, such spontaneous excitations 353 select the 'topological scale', on which such patterns can be 354 systematically formed. Relatedly, a phenomenon of stochastic 355 resonance (noise-facilitated signal propagation) has been evi-356 denced in so-called 'sub-threshold' networks, that is, for 357 which a single input excitation does not propagate to the 358 output nodes [50]. 359

The discrete dynamics facilitate a discussion of how excitation patterns are shaped by topological features, due to the possibility of exhaustively mapping all system states and the feasibility of computing large numbers of network and parameter variations. The approach allowed us to qualitatively assess contributions to functional connectivity and the relationship between structural and functional connectivity.

Let $x_i(t) \in \{S, E, R\}$ be the state of node *i* at time *t*. It is convenient to discuss the excitation pattern instead

$$c_i(t) = \begin{cases} 1, & x_i(t) = E \\ 0, & x_i(t) = S \lor R \end{cases}$$

In this way, we can define a co-activation matrix,

$$C_{ij} = \sum_t c_i(t)c_j(t),$$

as well as a time-delayed co-activation matrix (or signal

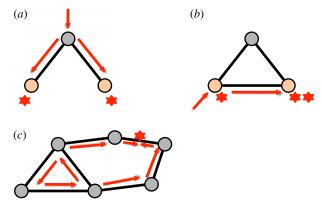


Figure 5. Schematic of the minimal topological situations underlying coactivation of nodes: (a) co-activation by a common neighbour, (b) sequential activation due to direct links and (c) enslavement of nodes by a short (here: three-node) cycle. (Online version in colour.)

propagation matrix),

$$C^{(+)}_{ij} = C_{i \to j} = \sum_{t} c_i(t)c_j(t+1)$$

Figures 5 and 6 compare several minimal topological situations in the context of possible contributions to these matrices.

Figure 5a shows a three-chain with an excitation entering at the middle node, leading to a joint excitation at the other two nodes and, consequently, a contribution to C_{ij} . Even though other entry points of excitations, as well as an embedding of this small network 'motif' into a larger network lead to a multitude of other contributions to both, C_{ii} and $C_{i \rightarrow i}$, we can nevertheless deduce that common neighbours lead to an increase in synchronous activity. When a link is added to the two nodes under consideration (thus moving from a threechain to a three-node loop), the sequential excitation of the two nodes becomes possible (in addition to the previous modes), thus allowing for a contribution to $C_{i \rightarrow j}$.

Figure 5c illustrates a more sophisticated contribution to network-shaped self-organization, namely the enslavement of nodes by periodic activity of short cycles. This phenomenon has been analysed in detail in Garcia *et al.* [18].

(i) Heterogeneous degree distribution

A heterogeneous degree distribution means that some nodes have more connections than others, resulting in the occurrence of hubs, which also have characteristic dynamic features. First, hubs are more active than low-degree nodes. Second, Garcia et al. [18] showed that the node degree is linked to the directed propagation of activity: high-degree nodes (hubs) act as 'senders', whereas low-degree nodes act predominantly as 'receivers' of activity. The reasons for this behaviour are indicated in figure 6. The figure illustrates the minimal topological mechanism of how propagating waves organize around hubs (as explored by Müller-Linow et al. [14]): single incoming excitations at a hub are amplified and spread out in a time-synchronous fashion. On a long time scale, the overlay of many such events leads to substantial contributions to C_{ij} in cases, where nodes *i* and *j* have the same distance from the hub.

(ii) Modules

In sparsely connected graphs, events of apparent transfer of activity between nodes correspond to actual causal transfers.

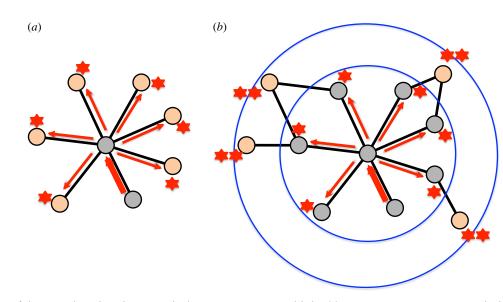


Figure 6. Schematic of the minimal topological situations leading to ring waves around hubs: (*a*) an incoming excitation activates the hub and leads to a subsequent excitation of all susceptible nearest neighbours; (*b*) susceptible nodes with a distance of 2 from the hub are then synchronously activated in the following time step. (Online version in colour.)

401 In such graphs, there may exist a correlation or even anti-402 correlation between structural links and co-activations, depend-403 ing on the parameters of the specific dynamic model. For 404 instance, in the simple deterministic SER model outlined above, 405 sparse random graphs show an anti-correlation between struc-406 tural links and co-activations [18]. In denser networks, not all 407 apparent transfers of activity correspond to actual causal trans-408 fers. In particular, in dense local neighbourhoods of networks, 409 that is, within modules, the local (anti-)correlation between 410 links and co-activations becomes reshaped by the larger scale net-411 work features. Specifically, common input of activity from within 412 the same modules results in modular co-activations and appear-413 ance of correlation between pairwise links and co-activations 414 [18]. This is an important finding, because it suggests that the fre-415 quently made observation between structural and functional 416 links in brain connectivity [51,52] is primarily induced by the 417 modular organization of such networks. 418

(iii) Hierarchy

419 420

379

380 381

391

397

398

399 400

421 Hierarchy can be expressed by different topological features of 422 a network, such as a combination or encapsulation of features, 423 or sequential arrangements of connectivity. Consequently, 424 there may be different ways in which hierarchy shapes neural 425 dynamics. For example, in hierarchical networks combining 426 modular and hub features, one can observe either hub- or 427 module-driven dynamics of the kind discussed above. These 428 dynamics switch depending on the amount of spontaneous 429 node activation or noise in the system [14]. Therefore, this par-430 ticular hierarchical arrangement provides a transition between 431 different dynamic regimes.

432 Neural systems are implicitly and explicitly hierarchical. 433 They are explicitly hierarchical, because in many cases the func-434 tional components are spread over many scales in space and 435 time (e.g. single ion channels up to brain areas). They are 436 implicitly hierarchical, because their organization and underlying 437 interaction patterns (at a specific spatial or temporal scale) often 438 have a nested and layered structure. This implicit hierarchical 439 organization (the network-related hierarchy) has been impli-440 cated in a variety of optimal behaviours and dynamic 441 functions by merging different topological features (e.g. modularity and integration). Moreover, hierarchy is related to the compressibility of random walks [53], to the coexistence of time scales [12], to the range of possible responses upon stimulation [14] and to the storage of patterns in the networks [54]. The impact a hierarchical structure leaves in dynamical processes can qualitatively be described as multi-scale patterns: the distribution of dynamical values across the graph remains invariant under topological coarse-graining (or, more specifically, it obeys well-defined scaling relationships, when such coarse-graining is performed iteratively [44]).

More generally, hierarchical (modular) networks facilitate network-sustained activity [40,55,56], which is a precondition for criticality. The link between network topology and criticality can be made explicit via the topological dimension, which is finite for some (in particular, sparse) hierarchical modular networks, resulting in expanded parameter regimes for criticality, so-called Griffiths phases [57].

3. Conclusion

(a) A new perspective of neural network dynamics

If the brain were a lattice, neural activity would necessarily produce rich and diverse spatio-temporal patterns, such as spiral waves, synchronous oscillations and concentric waves emanating from periodically firing pacemakers. Noise would be able to interact with the deterministic dynamics to produce coherent activity from, for instance, subthreshold activity. The system would, thus, display noise-facilitated, noise-induced and noise-sustained patterns, according to well-established principles of self-organizing patterns. Quite obviously, the brain is not a lattice. Neither can a random graph serve as a plausible representation of the intricate overlay of structural elements on all scales observed in real biological neural networks.

Here, we have formulated a new perspective on neural dynamics by drawing on concepts of spatio-temporal pattern formation. The heterogeneous network architecture is then viewed as a structural property *confining* patterns to few possible, network-compliant modes. Typical network analyses highlight and investigate deviations from random graphs.

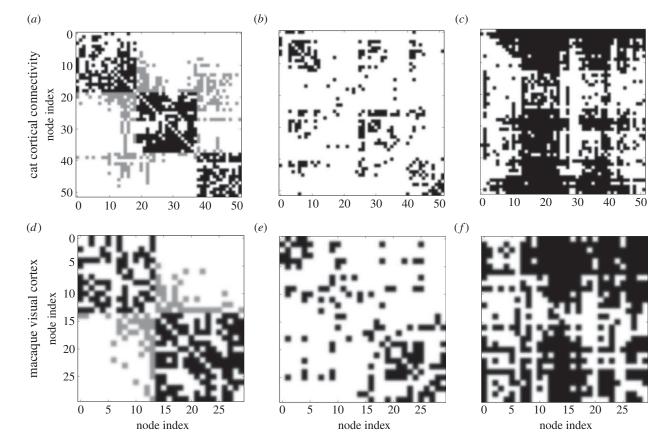


Figure 7. Cortical connectivity of the cat (a-c) macaque visual cortex (d-f), together with the resulting activation patterns. Column (a,d): adjacency matrix (intramodule links are represented in black and inter-module links are represented in grey). Column (b,e): average co-activation matrix C_{ij} binarized with a threshold of 0.46. Column (c,f): time-delayed co-activation (or signal propagation) matrix $C_{i\rightarrow j}$ binarized with a threshold of 0.28. Figure adapted from Garcia *et al.* [18].

Our perspective draws the attention to the deviations from regular graphs, as these deviations are the pattern-confining structural elements.

(b) Specific implications for understanding brain

dynamics

What concrete evidence exists for network-guided selforganization in neurobiological data?

Based on the topological ingredients discussed above and the subsequent detailed analysis of different dynamical processes on graphs, the notion of network-guided pattern formation points to several building blocks of excitation patterns relevant to neural dynamics and shaped by network topology:

- (1) hubs leading to the propagation of waves [14],
- (2) modules leading to localized synchronization, which in turn results in a strong agreement between structural and functional connectivity (as discussed by Garcia *et al.* [18]); and
- (3) hierarchical network organization with the potential of facilitating self-sustained activity, criticality, as well as transitions between different dynamical behaviours (see, in particular, Müller-Linow *et al.* [14] for the latter point).

Indeed, characteristic spatio-temporal patterns and their implications for functional neural dynamics have been demonstrated in different models of biological neural networks as well as for empirical data. For instance, in the large-scale thalamocortical model of Izhikevich & Edelman [58], the authors describe the emergence of waves and rhythms on different scales. Additional empirical examples are spreading depression waves associated with retinal migraine [59] and spiral wave dynamics in the neocortex [60].

8

rstb.royalsocietypublishing.org

Phil.

Trans. R. Soc. B 20130522

The spatial embedding of the networks can be a principal factor for the arising patterns: activity is spreading to nearby or adjacent patches of neural tissue, in which case networks form a grid or lattice on the brain surface [61]. Qualitatively speaking, patterns are observed *in spite of* the network, rather than *due to* the network. By contrast, the phenomenon discussed in this paper addresses the possibility of self-organized patterns where spatial embedding is not the determining factor of the dynamic behaviour. In biological terms, connections might link distant brain regions disturbing spatially localized dynamics [36,62]. Moreover, these long-distance connections might not even affect delays for activity diffusion due to increased axon diameter or myelination [63]. In these cases, the network topology as such dictates the permissible self-organized patterns.

The most striking example of network-guided selforganization has been discussed in Moretti & Munoz [57], where network heterogeneity generates regions in the network with long activity transients (see also [64,65]). In Moretti & Munoz [57], such Griffiths phase dynamics were suggested as a mechanism for self-sustained activity and critical dynamical states that do not require a careful parameter tuning. Similar to the Turing patterns arising from reaction–diffusion dynamics and the excitation waves around hubs discussed above, these dynamics are (less regular) forms of collective dynamic behaviours emerging from local interactions.

Criticality is one example of pattern-like self-organized collective dynamics. The importance of critical dynamical states, associated with power-law distributions of activity, has been intensely debated in neuroscience (e.g. [66,67]).

442

443 444

Remarkably, the network prerequisites discussed for Griffiths phase dynamics and a resulting expanded parameter range for criticality (in particular, a specific 'spectral fingerprint' [57] which can be directly computed from the adjacency matrix) are similar to the requirements for Turing instability on graphs [13] and the synchronizability of graphs [68].

511 A series of observations on the agreement of structural and 512 functional connectivity recently established using a simple 513 model of excitable dynamics on graphs [18] provides further 514 evidence for network-guided self-organization, in particular, 515 the observation that modules enhance the match between 516 structural and functional connectivity in the (dense) modules, 517 while a broad degree distribution tends to reduce the match 518 due to the organization of activity around hubs. Figure 7, as 519 well as the discussions by Garcia et al. [18] provide detailed 520 accounts of these associations. The effects captured by the sche-521 matic representations of local dynamics shown in figures 6 522 and 5 are the underlying microscopic mechanisms for the 523 coactivation patterns observed in figure 7.

Modular node activations, and anti-correlations of different modules, are a prominent and conspicuous feature of functional neural dynamics (e.g. Fox *et al.* [69]). They have been reproduced in a variety of large-scale computational modes (e.g. [70,71]). Our thinking suggests that

References

505

506

507

508

509

510

524

525

526

527

528

529 530 531

532 533

- Strogatz SH. 2001 Exploring complex networks. 1. 534 Nature 410, 268-276. (doi:10.1038/35065725) 535 Barabási A-L, Oltvai ZN. 2004 Network biology: 2. 536 understanding the cell's functional organization. Nat. 537 *Rev. Genet.* 5, 101–113. (doi:10.1038/nrg1272) 538 Barabási A-L. 2012 The network takeover. Nat. Phys. 3. 539 8, 14-16. (doi:10.1038/nphys2188) 540
- 4. Bullmore E, Sporns O. 2009 Complex brain networks: graph theoretical analysis of structural and functional systems. *Nat. Rev. Neurosci.* 10, 186–198. (doi:10.1038/nrn2575)
- $_{544}$ $_{180-198.}$ (doi:10.1038/nm2575)

 $_{545}$ 5.

 Sporns 0. 2011 Networks of the brain. Cambridge,

 $_{540}$ Q2

 MA: MIT Press.
- 6. Mikhailov AS, Calenbuhr V. 2002 From cells to
 societies: models of complex coherent action. Berlin,
 Germany: Springer.
- Levine H, Ben-Jacob E. 2004 Physical schemata underlying biological pattern formation: examples, issues and strategies. *Phys. Biol.* 1, P14–P22. (doi:10.1088/1478-3967/1/2/P01)
- 5548.Kessler D, Levine H. 1993 Pattern formation in
Dictyostelium via the dynamics of cooperative
biological entities. Phys. Rev. E, Stat. Phys. Plasmas
Fluids Relat. Interdiscip. Top. 48, 4801–4804.
(doi:10.1103/PhysRevE.48.4801)
- 5599.Sawai S, Thomason P, Cox E. 2005 An
autoregulatory circuit for long-range self-
organization in Dictyostelium cell populations.561Nature 433, 323 326. (doi:10.1038/nature03228)
- 56310.Geberth D, Hütt M. 2009 Predicting the distribution564of spiral waves from cell properties in a565developmentalpath model of Dictyostelium pattern566formation. *PLoS Comput. Biol.* 5, e1000422. (doi:10.5671371/journal.pcbi.1000422)

- Turing AM. 1952 The chemical basis of morphogenesis. *Phil. Trans. R. Soc. Lond. B* 237, 37-72. (doi:10.1098/rstb.1952.0012)
- Arenas A, Díaz-Guilera A, Pérez-Vicente C. 2006 Synchronization reveals topological scales in complex networks. *Phys. Rev. Lett.* **96**, 114102. (doi:10.1103/PhysRevLett.96.114102)
- Nakao H, Mikhailov AS. 2010 Turing patterns in network-organized activator-inhibitor systems. *Nat. Publish. Group* 6, 544–550.
- Müller-Linow M, Hilgetag CC, Hütt M-T. 2008 Organization of excitable dynamics in hierarchical biological networks. *PLoS Comput. Biol.* 4, e1000190. (doi:10.1371/journal.pcbi.1000190)
- Wang QY, Perc M, Duan ZS, Chen GR. 2010 Spatial coherence resonance in delayed Hodgkin – Huxley neuronal networks. *Int. J. Mod. Phys. B* 24, 1201–1213. (doi:10.1142/ S0217979210055317)
- Liao X, Xia Q, Qian Y, Zhang L, Hu G, Mi Y. 2011 Pattern formation in oscillatory complex networks consisting of excitable nodes. *Phys. Rev. E* 83, 056204. (doi:10.1103/PhysRevE.83.056204)
- Qian Y, Huang X, Hu G, Liao X. 2010 Structure and control of self-sustained target waves in excitable small-world networks. *Phys. Rev. E* 81, 036101. (doi:10.1103/PhysRevE.81.036101)
- Garcia GC, Lesne A, Hütt M, Hilgetag CC. 2012 Building blocks of self-sustained activity in a simple deterministic model of excitable neural networks. *Front. Comput. Neurosci.* 6, 50. (doi:10.3389/fncom. 2012.00050)
- Leyva I, Navas A, Sendiña Nadal I, Buldú JM, Almendral JA, Boccaletti S. 2011 Synchronization

this phenomenon may primarily result from the spatiotemporal pattern formation in modular neural networks, rather than depend on particular parameters of the local node dynamics.

As a further example, in Hütt *et al.* [50], it has been observed that signal coherence (measured by the amount of interdependent excitations) is enhanced by noise in a resonant fashion, with noise being provided by spontaneous excitations. This collective effect is similar to the well-known phenomenon of spatio-temporal stochastic resonance [72].

Finally and generally, the structural ingredients of selfsustained activity have been intensely discussed over the last years (e.g. Deco *et al.* [71,73]). Network-guided selforganization may provide a promising novel framework for better understanding the network requirements for such collective dynamic states of neuronal activity.

Funding statement. M.T.H. is supported by DFG grant no. HU 937/7-1. M.K. was supported by the WCU programme through the KOSEF funded by the MEST (R31-10089), EPSRC (EP/K026992/1) and the CARMEN e-science project (http://www.carmen.org.uk) funded by EPSRC (EP/E002331/1). C.C.H. is supported by DFG grant nos. HI 1286/5-1 and SFB 936/A1.

waves in geometric networks. *Phys. Rev. E*, **84**, 065101. (doi:10.1103/PhysRevE.84.065101)

- Burns GAPC, Young MP. 2000 Analysis of the connectional organization of neural systems associated with the hippocampus in rats. *Phil. Trans. R. Soc. Lond. B* 355, 55–70. (doi:10.1098/ rstb.2000.0549)
- Scannell J, Blakemore C, Young M. 1995 Analysis of connectivity in the cat cerebral cortex. *J. Neurosci.* 15, 1463 – 1483.
- Scannell JW, Burns GA, Hilgetag CC, O'Neil MA, Young MP. 1999 The connectional organization of the cortico-thalamic system of the cat. *Cereb. Cortex* 9, 277–299. (doi:10.1093/cercor/9.3.277)
- Felleman DJ, van Essen DC. 1991 Distributed hierarchical processing in the primate cerebral cortex. *Cereb. Cortex* 1, 1–47. (doi:10.1093/cercor/ 1.1.1)
- Hilgetag C-C, Burns GAPC, O'Neill MA, Scannell JW, Young MP. 2000 Anatomical connectivity defines the organization of clusters of cortical areas in the macaque monkey and the cat. *Phil. Trans. R. Soc. Lond. B* **355**, 91–110. (doi:10.1098/ rstb.2000.0551)
- Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ, Wedeen VJ, Sporns O. 2008 Mapping the structural core of human cerebral cortex. *PLoS Biol.* 6, e159. (doi:10.1371/journal.pbio.0060159)
- Kaiser M, Varier S. 2011 Evolution and development of brain networks: from *Caenorhabditis elegans* to *Homo sapiens. Network Comput. Neural Syst.* 22, 143–147.
- 27. Erdös P, Rényi A. 1960 On the evolution of random graphs. *Publ. Math. Inst. Hung. Acad. Sci.* **5**, 17-61.

- Kaiser M, Martin R, Andras P, Young MP. 2007
 Simulation of robustness against lesions of cortical networks. *Eur. J. Neurosci.* 25, 3185–3192. (doi:10.
 1111/j.1460-9568.2007.05574.x)
- Sporns O, Honey CJ, Kötter R. 2007 Identification and classification of hubs in brain networks. *PLoS ONE* 2, e1049. (doi:10.1371/journal.pone.0001049)
- Eguíluz VM, Chialvo DR, Cecchi G, Baliki M, Apkarian
 Eguíluz VM, Chialvo DR, Cecchi G, Baliki M, Apkarian
 AV. 2005 Scale-free brain functional networks. *Phys. Rev. Lett.* 94, 018102. (doi:10.1103/PhysRevLett.
 94.018102)
- 579 31. Hilgetag CC, Kaiser M. 2004 Clustered organisation
 580 of cortical connectivity. *Neuroinformatics* 2,
 581 353-360. (doi:10.1385/NI:2:3:353)
- Sporns O, Tononi G, Edelman GM. 2000 Theoretical neuroanatomy: relating anatomical and functional connectivity in graphs and cortical connection matrices. *Cereb. Cortex* **10**, 127–141. (doi:10.1093/ cercor/10.2.127)
- ⁵⁸Q3 33. White JG, Southgate E, Thomson JN, Brenner S. 1986
 The structure of the nervous system of the nematode
 Caenorhabditis elegans. Phil. Trans. R. Soc. Lond. B **314**, 1–340. (doi:10.1098/rstb.1986.0056)
- 34. Achacoso T, Yamamoto W. 1992 AY's neuroanatomy
 of C. elegans for computation. Boca Raton, FL:
 CRC Press.
- 594
 35.
 Cherniak C. 1994 Component placement

 595
 optimization in the brain. J. Neurosci. 14,

 596
 2418–2427.
- 597 36. Costa LdF, Kaiser M, Hilgetag CC. 2007 Predicting
 598 the connectivity of primate cortical networks from
 599 topological and spatial node properties. *BMC Syst.* 600 *Biol.* 1, 16. (doi:10.1186/1752-0509-1-16)
- Girvan M, Newman MEJ. 2002 Community structure
 in social and biological networks. *Proc. Natl Acad. Sci. USA* 99, 7821–7826. (doi:10.1073/pnas.
 122653799)
- 88. Palla G, Derenyi I, Farkas I, Vicsek T. 2005
 Uncovering the overlapping community structure of
 complex networks in nature and society. *Nature*435, 814–818. (doi:10.1038/nature03607)
- Sporns 0. 2006 Small-world connectivity, motif
 composition, and complexity of fractal neuronal
 connections. *Biosystems* 85, 55–64. (doi:10.1016/j.
 biosystems.2006.02.008)
- 40. Kaiser M, Görner M, Hilgetag C. 2007 Criticality of
 spreading dynamics in hierarchical cluster networks
 without inhibition. *New J. Phys.* 9, 110. (doi:10.
 1088/1367-2630/9/5/110)
- 41. Young MP. 1992 Objective analysis of the
 topological organization of the primate cortical
 visual system. *Nature* 358, 152–155. (doi:10.1038/
 358152a0)
- 621
 42.
 Friston K. 2008 Hierarchical models in the brain.

 622
 PLoS Comput. Biol. 4, e1000211. (doi:10.1371/

 623
 journal.pcbi.1000211)
- 624
 43. Yu H, Gerstein M. 2006 Genomic analysis of the

 625
 hierarchical structure of regulatory networks. Proc.

 626
 Natl Acad. Sci. USA 103, 14 724 14 731. (doi:10.

 627
 1073/pnas.0508637103)
- 628 44. Gallos LK, Song C, Havlin S, Makse HA. 2007 Scaling
 629 theory of transport in complex biological networks.
 630

Proc. Natl Acad. Sci. USA **104**, 7746-7751. (doi:10. 1073/pnas.0700250104)

- Breakspear M, Stam CJ. 2005 Dynamics of a neural system with a multiscale architecture. *Phil. Trans. R. Soc. B* 360, 1051–1074. (doi:10.1098/rstb. 2005.1643)
- Sporns O, Chialvo DR, Kaiser M, Hilgetag CC. 2004 Organization, development and function of complex brain networks. *Trends Cogn. Sci.* 8, 418–425. (doi:10.1016/j.tics.2004.07.008)
- Young DA. 1984 A local activator-inhibitor model of vertebrate skin patterns. *Math. Biosci.* **72**, 51–58. (doi:10.1016/0025-5564(84)90060-9)
- Müller-Linow M, Marr C, Hütt M. 2006 Topology regulates the distribution pattern of excitations in excitable dynamics on graphs. *Phys. Rev. E* 74, 1–7. (doi:10.1103/PhysRevE.74.016112)
- Hütt M, Lesne A. 2009 Interplay between topology and dynamics in excitation patterns on hierarchical graphs. *Front. Neuroinform.* 3. (doi:10.3389/neuro. 11.028.2009)
- Hütt M-T, Jain M, Hilgetag CC, Lesne A. 2012 Stochastic resonance in discrete excitable dynamics on graphs. *Chaos Solitons Fractals* 45, 611–618. (doi:10.1016/j.chaos.2011.12.011)
- Haimovici A, Tagliazucchi E, Balenzuela P, Chialvo DR. 2013 Brain organization into resting state networks emerges at criticality on a model of the human connectome. *Phys. Rev. Lett.* **110**, 178101. (doi:10.1103/PhysRevLett.110.178101)
- Honey CJ, Sporns O, Cammoun L, Gigandet X, Thiran JP, Meuli R, Hagmann P. 2009 Predicting human resting-state functional connectivity from structural connectivity. *Proc. Natl Acad. Sci. USA* **106**, 2035 – 2040. (doi:10.1073/pnas.0811168106)
- Rosvall M, Bergstrom CT. 2011 Multilevel compression of random walks on networks reveals hierarchical organization in large integrated systems. *PLoS ONE* 6, e18209. (doi:10.1371/journal.pone. 0018209)
- Kashtan N, Noor E, Alon U. 2007 Varying environments can speed up evolution. *Proc. Natl Acad. Sci. USA* **104**, 13 711–13 716. (doi:10.1073/ pnas.0611630104)
- Kaiser M, Hilgetag CC. 2010 Optimal hierarchical modular topologies for producing limited sustained activation of neural networks. *Front. Neuroinform.* 4, 8. (doi:10.3389/fninf.2010.00112)
- Wang S-J, Hilgetag CC, Zhou C. 2011 Sustained activity in hierarchical modular neural networks: self-organized criticality and oscillations. *Front. Comput. Neurosci.* 5, 30.
- Moretti P, Munoz MA. 2013 Griffiths phases and the stretching of criticality in brain networks. *Nat. Commun.* 4, 1–10. (doi:10.1038/ncomms3521)
- Izhikevich E, Edelman G. 2008 Large-scale model of mammalian thalamocortical systems. *Proc. Natl Acad. Sci. USA* **105**, 3593 – 3598. (doi:10.1073/pnas. 0712231105)
- Yu Y *et al.* 2012 Reentrant spiral waves of spreading depression cause macular degeneration in hypoglycemic chicken retina. *Proc. Natl Acad. Sci.*

USA **109**, 2585–2589. (doi:10.1073/pnas. 1121111109)

- Huang X, Xu W, Liang J, Takagaki K, Gao X, Wu J-Y.
 2010 Spiral wave dynamics in neocortex. *Neuron* 68, 978–990. (doi:10.1016/j.neuron.2010.11.007)
- O'Dea R, Crofts JJ, Kaiser M. 2013 Spreading dynamics on spatially constrained complex brain networks. J. R. Soc. Interface R. Soc. 10, 20130016. (doi:10.1098/rsif.2013.0016)
- Knock SA, McIntosh AR, Sporns O, Kötter R, Hagmann P, Jirsa VK. 2009 The effects of physiologically plausible connectivity structure on local and global dynamics in large scale brain models. *J. Neurosci. Methods* **183**, 86–94. (doi:10. 1016/j.jneumeth.2009.07.007)
- Buzsaki G, Logothetis N, Singer W. 2013 Scaling brain size, keeping timing: evolutionary preservation of brain rhythms. *Neuron* **80**, 751–764. (doi:10. 1016/j.neuron.2013.10.002)
- Hilgetag CC, Hütt M-T. 2014 Hierarchical modular brain connectivity is a stretch for criticality. *Trends Cogn. Sci.* 18, 114–115. (doi:10.1016/j.tics.2013. 10.016)
- Munoz MA, Juhasz R, Castellano C, Odor G. 2010 Griffiths phases on complex networks. *Phys. Rev. Lett.* **105**, 128701. (doi:10.1103/PhysRevLett. 105.128701)
- Rubinov M, Sporns O, Thivierge J-P, Breakspear M. 2011 Neurobiologically realistic determinants of self-organized criticality in networks of spiking neurons. *PLoS Comput. Biol.* 7, e1002038. (doi:10. 1371/journal.pcbi.1002038)
- Tagliazucchi E, Balenzuela P, Fraiman D, Chialvo DR. 2012 Criticality in large-scale brain FMRI dynamics unveiled by a novel point process analysis. *Front. Physiol.* **3**, 15. (doi:10.3389/fphys.2012.00015)
- Arenas A, Díaz-Guilera A, Kurths J, Moreno Y, Zhou C. 2008 Synchronization in complex networks. *Phys. Rep.* 469, 93–153. (doi:10.1016/j.physrep. 2008.09.002)
- Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME. 2005 The human brain is intrinsically organized into dynamic, anticorrelated functional networks. *Proc. Natl Acad. Sci. USA* **102**, 9673–9678. (doi:10.1073/pnas.0504136102)
- Honey CJ, Kötter R, Breakspear M, Sporns O. 2007 Network structure of cerebral cortex shapes functional connectivity on multiple time scales. *Proc. Natl Acad. Sci. USA* **104**, 10240–10245. (doi:10.1073/pnas.0701519104)
- Deco G, Jirsa V, McIntosh AR, Sporns O, Kotter R. 2009 Key role of coupling, delay, and noise in resting brain fluctuations. *Proc. Natl Acad. Sci.* USA **106**, 10 302–10 307. (doi:10.1073/pnas. 0901831106)
- Jung P, Mayer-Kress G. 1995 Spatiotemporal stochastic resonance in excitable media. *Phys. Rev. Lett.* 74, 2130–2133. (doi:10.1103/PhysRevLett.74.2130)
- Deco G, Jirsa VK, Mcintosh AR. 2011 Emerging concepts for the dynamical organization of restingstate activity in the brain. *Nat. Rev. Neurosci.* 12, 43-56. (doi:10.1038/nrn2961)

Phil. Trans. R. Soc. B 20130522

10