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1 Supplementary Figures
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Figure S1: Run-time complexity O(nα) of the used local measures (r, cv, cc, loc, cc2, K) increases
polynomially in network size n (average value for 100 networks). Growth determining exponent α
depends on edge-density (10%, 25%, 50%) and to lesser extent on network model (ER, WS, BA).
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Figure S2: Adjacency matrix and belonging network during rewiring process as described by Watts
and Strogatz [14] (number of steps in upper right corner; inset: network representation with nodes
arranged on a circle). Beginning with a perfectly regular ring lattice (200 nodes) where each node
is linked to its 6 closest neighbours (upper left), nodes are visited successively (one per step) and
connections are randomly rewired with a probability of 40%. On the kth visit to a node, it is the
link to the kth neighbour on the right, which is potentially rewired. After 600 steps (lower right)
every node has been visited three times and on average 40% of all links have changed.
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Figure S3: Graphical user interface for the BtA-workflow: a Nodes mapped to PCA-plane where
their probability is coded by colour. b Sorted node probabilities and relative differences. Red
and green colour indicates singular and regular nodes, respectively. Mean probability indicated
by black line; blue line marks mean minus one standard deviation. Stems (cyan) indicate relative
differences between their two adjacent probabilities. c Manual workflow-parameter control and
options for result export. By default, changed settings show immediate effect in all plots (a,b,d–
f). d Contour plot of PDF with reduced feature vectors superimposed, whose colour indicates
whether they are classified regular or singular. e PCA-plane (rescaled by standard deviations)
showing differently coloured motif groups. f Bar plot showing the relative frequency for each
motif-region. A brief characterisation of each motif is given above its bar.
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Figure S4: Contour plots of PDFs estimated using two different Gaussian kernels (upper left inlet).
a Identical kernel bandwidth in both dimensions. With this symmetric kernel, the estimated
PDF shows broad spreading of probability mass along vertical axis. b Kernel bandwidths scaled
according to standard deviation along corresponding PC-axis. This adopted kernel results in a
thinner and better matching PDF.
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Figure S5: Density functions of 2D-Gaussian (σx = σy = 1) with different correlation (ρ =
0.0, 0.6, 0.9). a Uniformity of probability mass distribution around centre (µx = µy = 0) without
correlation. b Gradually increasing correlation leads to tilting and c concentration of probability
mass along the diagonal.
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2 Notes on the Software-Implementation

Our implementation of the workflow including the automatic parameter determination is publicly
available (http://www.biological-networks.org/). Below we briefly mention the workflow-
alternatives of the software.

2.1 Kernel-Bandwidth

By default, the kernel-bandwidth is scaled according to the standard deviation along each principal
component (PC) axis. Variability-based re-shaping of the kernel function improves the overall fit
of the PDF to the points (Fig. S4). The kernel can also be made symmetric by deactivating the
tick-box below the panel shown in Fig. S3a.

2.2 Number of Singular Nodes w

By default, our implementation of the workflow chooses the number of singular nodes w according
to equation (1). This setting can be overwritten by the user, who is provided with a plot of all
nodes’ probabilities together with their relative differences (Fig. S3b). Manually chosen values
for w can thereby be easily related to the default setting.

2.3 Number of Motif Groups k

Our implementation of the workflow provides 3 alternatives to determine k: By default motif-
groups are determined deterministically through cliques of overlapping ellipses, as illustrated
in Fig. 4. The user can also choose to determine the number of clusters using the ellipses, but
perform clustering with k-means++. As the last alternative, k-means++ can be applied with a
customised number of motif-groups.

3 Run-Time Complexity

The bulk of the runtime of the BtA-workflow is spent on step 1 where all selected local network
measures are computed. Run-time complexity here depends on the measures that are chosen
to characterise each node. We estimated how computational costs scale for six common local
measures [4]. Like Costa et al. [5], we selected the normalised average degree r, the coefficient of
variation of the degrees of the immediate neighbours of a node cv, the clustering coefficient cc [7,
14], the locality index loc, the hierarchical clustering coefficient of level two cc2 [3], and the
normalised node degree K. These measures have been applied to random networks, which have
been generated according to the Erdős-Rényi (ER) [6], Watts-Strogatz (WS) [14], and Barabási
and Albert (BA) [1] model. A polynomial function was fitted (root mean square error) to the
average run-times to determine their dependence on network size. Additional to the size of the
network, its edge density might also affect run-time, which is why we repeated the process while
varying sparseness 1. The results show relatively stable growth rates, irrespective of network model
or connection density: Our näıve implementations of the six measures show run-time complexities
ranging from linear to less than cubic (Fig. S1). Costs are thus comparatively cheap considering
methods that identify specific connectivity patterns by counting occurrences of particular sub-
graphs (e.g. [2, 8–11, 13]); such motif-counts also scale at least linearly in network size, but they
show exponentially growing costs as the size of the motif-pattern increases [8]. In practice this
often means that counts can not be determined for patterns involving 10 nodes or more [12],
which renders some domains computationally intractable for this approach. In these cases the
BtA-methodology might still be applicable: Local networks measures that only scale polynomially
are comparatively fast to calculate and exceptional network characteristics can therefore even be
identified in very large networks.

1For each random network-model (ER, BS, WS) any combination of network size (n = 10, . . . , 100 nodes) and
edge density (10%, 25%, and 50%) has been evaluated 100 times.
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4 A Small-World Emerging - Detailed Result Discussion

In total we identified 5 singular node motifs, which differ in frequency and time of emergence
(Fig. 3c): Motifs 2, 3 and 5 appear right from the beginning of the rewiring process; motifs 2
and 5 gradually become more common over time, whereas 3 levels out after a transient peak. The
remaining motifs 1 and especially 4 only become apparent at later stages towards which both
become more frequent. The motifs’ temporally dependent expression levels can be understood by
looking at their individual characteristics (Fig. 3d):

1. A node according to motif 1 has relatively few connections in contrast to its well connected
neighbourhood. Other nodes that were initially linked to it have rewired themselves and
because connections only change in 40% of the cases, motif 1 is rarely observed in early
stages.

2. This contrasts the early appearance of motif 2 for which corresponding nodes are signified
by many connections to a rather sparsely connected neighbourhood. From the starting point
of a ring lattice such configuration occurs, as re-linking one of the initial regular connections
destroys the local neighbourhood structure; if multiple nodes re-wire to the same target its
degree grows, which makes the node a candidate for motif 2.

3. Motif 3-nodes have relatively few connections and nodes in their neighbourhood are sim-
ilar in number of links and corresponding targets. This characterisation fits nodes linked
to others that have been disconnected from the direct neighbours only. Such is likely to
be observed during the first 200 steps of the rewiring process, where links to the closest
neighbour are replaced, which is in agreement with motif 3’s early peak in frequency. Later,
when connections to further away neighbours are lost, the locality index decreases and fewer
nodes fulfil the profile of motif 3.

4. The 4th motif mostly starts to appear when nodes are visited for the third time and some
of the longest initial connections are replaced. At these late stages the ring lattice has
undergone substantial perturbation, such that nodes differ widely in their degree and in-
terconnectivity. Motif 4 describes rarely connected nodes whose neighbours have a diverse
number of connections; but instead of being linked between each other, neighbours share
other common targets.

5. The final motif 5 can be best characterised by its relation to the rest of the network, which
shows a higher degree of connectivity than any node involved in the motif. Neighbours of the
motif-node further vary in their number of connections and do not link to each other. This
motif emerges early on, but its frequency rises more quickly during the last re-wiring-pass.
During that time the last initial links are broken up and motif 5 emerges, as more parts of
the network finally become sparse enough.
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