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Abstract

Complex networks have been characterised by their specific connectivity patterns (network motifs), but their building
blocks can also be identified and described by node-motifs—a combination of local network features. One technique to
identify single node-motifs has been presented by Costa et al. (L. D. F. Costa, F. A. Rodrigues, C. C. Hilgetag, and M. Kaiser,
Europhys. Lett., 87, 1, 2009). Here, we first suggest improvements to the method including how its parameters can be
determined automatically. Such automatic routines make high-throughput studies of many networks feasible. Second, the
new routines are validated in different network-series. Third, we provide an example of how the method can be used to
analyse network time-series. In conclusion, we provide a robust method for systematically discovering and classifying
characteristic nodes of a network. In contrast to classical motif analysis, our approach can identify individual components
(here: nodes) that are specific to a network. Such special nodes, as hubs before, might be found to play critical roles in real-
world networks.

Citation: Echtermeyer C, da Fontoura Costa L, Rodrigues FA, Kaiser M (2011) Automatic Network Fingerprinting through Single-Node Motifs. PLoS ONE 6(1):
e15765. doi:10.1371/journal.pone.0015765

Editor: Matjaz Perc, University of Maribor, Slovenia

Received October 15, 2010; Accepted December 2, 2010; Published January 31, 2011

Copyright: � 2011 Echtermeyer et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Marcus Kaiser and Christoph Echtermeyer were supported by the Engineering and Physical Sciences Research Council (EPSRC) (EP/G03950X/1), the
CARMEN e-science project (http://www.carmen.org.uk) funded by EPSRC (EP/E002331/1), and the World Class University program through the National Research
Foundation of Korea funded by the Ministry of Education, Science and Technology (R32-10142). Luciano da F. Costa is grateful to Conselho Nacional de
Desenvolvimento Cientı́fico e Tecnológico (CNPq) (301303/06-1) and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) (05/00587-5) for financial
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Introduction

Networks appear in a variety of real-world systems ranging from

biology to engineering [1,2]. Examples include neural [3–5], social

[6–8], and computer networks [9,10] to name but a few. Networks

have been used to study the emergence of cooperative behaviour

[11–13]; to address epidemiological questions [14,15] especially in

scale free networks [16,17]; and to investigate the causes of

cascade effects [18,19] for a more complete understanding of why

networks differ in robustness against error and attack [20,21].

Attempts to classify network-topologies [22] were accompanied by

detailed studies of scale-free [23] and small-world networks [24,25]

—properties that were identified in many real networks.

Additional to investigations of concrete structures, theoretical

studies of random networks collected valuable information about

large classes of networks [26–28].

Mapping complex systems to networks revealed that some

nodes are remarkably different from other nodes of the same

network. For instance, hubs, characterized by a high number of

connections (a high node degree), often play a fundamental role in

protein-protein interaction networks and their removal can be

lethal for an organism [29,30]. Hubs are similarly important for

socio-economic systems, where defective hubs can cause cooper-

ation to decline [31]. Also, in engineered systems like the Internet,

hubs are important to maintain the communication between

autonomous systems [20]. These outlier nodes have been

identified since the introduction of complex network theory, e.g.

in the World Wide Web [9] and the Internet [10], but hubs are

outliers only in terms of their degree; other network properties can

also define special nodes. For instance, Internet topology has been

shown decompose onion-like into different shells around a

relatively small core network [32]. The closer a node’s layer is

to the core, the higher is the node’s shell-index (coreness) [33].

Nodes with high coreness are not necessarily hubs, which one

might suspect to be the most efficient spreaders of information.

Instead, the position of a node close to the network-core has more

impact on successful dissemination than having a high degree [34].

In networks where hubs are not present, as in most geographical

networks, nodes whose neighbours are also connected to each

other are special (high local clustering coefficient). Further

examples of outlier nodes can be found with different measures

some of which examine more than the direct neighbourhood of a

node [26,35], such that they specify rather global (network specific)

than local (node specific) characteristics. Global measures, such as

characteristic path length or clustering coefficient [24], summarise

the whole network in a single value. Local measurements, on the

other hand, analyse each node or edge individually, yielding a

more fine-grained picture of the network. Nodes that express
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common features and outliers that are different can be identified

with pattern recognition approaches, which group nodes of similar

characteristics. Corresponding techniques have been proposed

recently [36–38] and revealed important network properties. For

example, in protein-protein interaction networks the relative

number of outliers tends to decrease with the complexity of

organism, i.e. proteins in more complex species show higher

homogeneity in their interplay [38]. This demonstrates that, by

considering multiple node-features jointly, pattern recognition

based methods can point out exceptional network components.

Networks can describe complex systems whose interactivity

between dynamical components changes over time. Altered

connections between the elements (represented by nodes) may in

turn feed back on the dynamics, such that the dynamical process

and the network topology evolve in an adaptive fashion [39]. In

the context of game theory, corresponding coevolution of

behaviour and connectivity has been studied in socio-economic

systems [12,13]. In complex scenarios like these, analysing a single

network is often insufficient and several networks must be

compared to gain insights. Further examples for the need of

network-comparisons are families of protein-protein interaction

networks, brain connectivity networks in patient- and control-

populations, or time-dependent (developing or declining) networks

[40]. Comparing such sets of networks requires consistent

approaches, which are often non-trivial, because networks differ

in size (number of nodes or edges) or they comprise a disjoint sets

of nodes (some nodes occur in one network but not in others).

Direct comparisons between structures may thus be ruled out.

Based on outlier-detection as described above, we previously

proposed motif-regions for which the relative frequencies of

outliers falling into one of them yields a network specific

fingerprint [41]. Relating different networks to each other has

thereby become as easy as comparing bar-graphs. Nevertheless,

although this methodology has been demonstrated to be suitable

and accurate for outlier identification as well as for network

comparisons, it suffers from several limitations, which we address

in this paper.

Here, we describe a novel workflow for detecting characteristic

single-node motifs and for using fingerprints for network

comparison. Improvements compared to the previous approach

include (a) automatic parameter determination, which facilitates

high throughput analysis without user interaction, and (b)

replacing the k-means clustering algorithm with a deterministic

method to simplify the workflow and to improve robustness of

results. In addition, we provide (c) a validation of our method and

(d) an application to networks where the topology changes over

time (addition or deletion of nodes or edges).

Previous work
The application of single measures to complex networks has

revealed important insights in many cases. However, as Newman

and Leicht recognised [36], detecting exceptions is limited to

network features that are quantified by the measures in use.

Otherwise, if the chosen characteristics do not reflect the

properties that are specific for a network or its components,

important features remain unnoticed.

To solve this problem, two complementary approaches have

been suggested. The first approach by Newman and Leicht groups

nodes based on their connectivity without any further prior

information [36]. By fitting the parameters of a mixture model

(using an expectation-maximization algorithm), each node is

assigned a probability of belonging to any one group that has

been identified. The probabilistic nature of this approach has the

advantage that nodes that can not be unambiguously categorised

are not crudely assigned to one particular group, but the conflict

becomes evident, such that it can be dealt with. The structure of

networks can thereby be investigated without requiring any other

parameter than the number of groups that are to be created. This

elegant method has been examined thoroughly and improvements

to it have been suggested [37,42].

Analyses with focus on only one particular aspect of a network

at a time might fail to detect irregularities or similarities in

structure. The second approach is to avoid single measures and to

use a combination of multiple ones [41]. Instead of reducing

network components down to one dimension, joint measures map

it into a multi-dimensional feature space [43]; each vector-point in

that space corresponds to a combination of node-characteristics

and statistical methods are used to identify motif regions, such that

each vertex falls into one of them: A node is either classified

regular—showing features like the majority of nodes—or singular,

i.e. its features deviate by following a particular single node-motif.

The term motif refers to the concept of network motifs, i.e.

patterns incorporating multiple nodes [44].

Each of these two approaches to identify patterns in complex

networks has its drawbacks and advantages. The Newman and

Leicht algorithm (NLA) does not depend on one or few network

measures, but it works on network links directly. Networks are not

restricted to undirected ones, but directed links and even weighted

ones can be considered. The NLA requires the number of node-

groups to be specified; this is also true for the approach by Costa et

al. [Beyond the Average (BtA)], where the number of motif regions

needs to be chosen a priori [41]. Unfortunately, for real-world

networks this number is often unknown. The BtA-workflow

requires two additional parameters to control which nodes will

constitute individual motif regions. Both methods differ in their

output, as BtA not only provides a grouping of nodes, but also a

network-fingerprint, which can be used to compare networks from

different domains. Most importantly, however, is the conceptional

distinction between NLA and BtA, as they rely on local edge

connectivity and local node measures, respectively. BtA will fail to

pinpoint features of the network, if the chosen set of measures can

not formulate a corresponding motif. Similarly NLA can fail, as it

only takes into account direct connections between nodes: NLA

does not consider how the neighbours of a node are connected, for

example, but BtA can deal with such information (by evaluating

the local clustering coefficient). Indeed, the extensibility concern-

ing features to assess is the biggest advantage of BtA; (un-)directed

and weighted links can be processed likewise and in spatial

networks the location of nodes can be taken into account. In

conclusion, NLA is readily applicable to a broad variety of

network domains; however, considering direct connections only is

a weakness. BtA can be nicely adopted to these cases, but care has

to be taken at all times to ensure the set of measures is diverse

enough to cover as many patterns that might occur in networks as

possible.

In the next section we suggest several improvements to the BtA-

workflow (Fig. 1), which can be sketched as follows: Initially,

multiple local network measures are applied to each node, which

yields a multi-dimensional characterisation in form of a feature

vector. Correlation between different measures is accounted for by

principal component analysis (PCA), which is used to map feature

vectors of all nodes to two dimensional space [45, Chapter 8].

Next, nodes are assigned probabilities in order to distinguish nodes

with common and rare features. The required probability density

function (PDF) is gained by smoothing over points in the two

dimensional PCA-plane (Parzen window approach [46, 47,

Chapter 4.3]). Now, the least probable nodes, i.e those with

uncommon features, can be identified from the PDF. These

Network Fingerprinting through Single-Node Motifs
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singular nodes are then clustered in order to distinguish different

motif-groups. Each of the two dimensional motif-groups corresponds

to a higher dimensional motif-region into which the feature vectors

split up and the distribution of feature vectors among the different

motif-regions is the fingerprint of the network. Apart from the initial

decision on which measures to use, the user needs to choose the

bandwidth of the smoothing kernel, the number of singular nodes

w, and the number of motif-groups k, respectively (steps 3, 4, and

5 in Fig. 1). Additionally, when comparing multiple networks, a

limit must be specified below which motif regions are considered

too close to each other to constitute different motifs (join threshold;

Step 7). So far, these settings had to be chosen manually, but here

we suggest how to determine all three parameters (bandwidth, w,

and k) automatically. The last setting (join threshold), however, is

not considered for automation: So far we could not identify a

procedure that yields results as good as manual selection by the

user. We thus concentrated our efforts on the parameters that

need to be set for every network (bandwidth, w, and k), such that

high-throughput applications become possible. Automating the

setting of the main parameters is thus of higher benefit than for the

threshold that determines Voronoi cells to be joined; this needs to

be chosen only once, when all networks are compared to each

other at the end.

Results

In this paper we propose how to choose all relevant parameters

of the BtA-workflow automatically (see Methods section), which

allows for the analysis of many networks without the need for

human interaction. The only remaining limiting factor for high

throughput analyses are the computational costs of the analysis,

which predominantly depend on the measures that are chosen to

characterise each node. Using implementations of common local

measures (see File S1), the estimated run-time scales linearly to

cubic with network size (Fig. S1). Costs are thus comparatively

cheap considering methods that identify specific connectivity

patterns by counting occurrences of particular sub-graphs (e.g.

[44,48–52]); such motif-counts also scale at least linearly in

Figure 1. Analysis work-flow to identify global singular nodes from local features [41]. Step 1: Choose set of local measures to
characterise network nodes [35]. Calculate local measurements for all nodes in the network (feature vectors). Step 2: Map each node’s feature vector
to lower dimensional space using principal component analysis (PCA plane) [45, Chapter 8]. Step 3: Estimate each node’s probability using the Parzen
window approach (PDF) [46, 47, Chapter 4.3]. Step 4: Query PDF to identify least probable nodes (singular nodes). Step 5: Cluster singular nodes in
PCA plane using k-means (motif groups) [65, Chapter 20.1]. Step 6: Determine Voronoi cells for grouped nodes using a modified Mahalanobis distance
(potential motif regions) [69]. Step 7: Join potential motif regions that are close to each other (motif regions). Step 8: Calculate relative frequencies of
nodes falling into motif-regions (A–F) or non-motif region (NO) (fingerprint).
doi:10.1371/journal.pone.0015765.g001
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network size, but they show exponentially growing costs as the size

of the motif-pattern increases [50]. In practice this often means

that counts can not be determined for patterns involving 10 nodes

or more [53], which renders some domains computationally

intractable for this approach, but eventually not for BtA. However,

before processing huge networks or many different structures with

BtA, we first need to verify that parameters are indeed chosen

adequately, which is confirmed in the next section.

Method Verification
The first validation is on a network that is small enough to

confirm BtA-results by eye: We use a family-tree from The Simpsons

[54] to create a network with nodes representing characters and

directed links pointing to their offspring (Fig. 2a). Nodes that have

a sparsely connected and homogeneous neighbourhood are

suitably highlighted as outliers by BtA.

With these reassuring results from a single network, we proceed

by testing BtA on whole series: We generate structures with both

regular components and exceptional ones, which BtA has to

identify. In our first series we compose networks of two

components: a regular ring lattice and a smaller Erdös-Rényi

(ER) [55] random network (Fig. 2b). While the ring lattice remains

unchanged, the size of the random module increases throughout

the series, such that its proportion of the full network grows

gradually. The ring lattice is comprised of 100 nodes, each of

which is connected to its four closest neighbours (Fig. 2b). The

generated ER-random networks (n~1, . . . ,50 nodes) have an

average edge-density of 25%. Composed networks are analysed

with BtA: Of all outlier-nodes less than 2% are missed while over

96% are classified correctly, if the random component contributes

less than 25% of nodes to the network. Beyond that limit, the

number of nodes in the random-part does no longer match the

number of identified outliers w. But this does not imply a mis-

classification by BtA: The larger a random network, the more

likely it is that a few nodes are connected regularly (or close to

that). Quantifying these nodes with local network measures yields

the same values as (or similar to) those of the ring lattice, which is

why it would be incorrect to consider them singular. Additional to

regular connection patterns in large random networks, other local

motifs can also be frequent enough, such that they constitute a

common rather than an exceptional feature of the network. Thus,

network components that seem clearly separable at first may

actually be very similar or—although intended to form outliers—

they may contain common elements, due to random effects.

Together this explains the observed deviations in numbers of

outliers for growing ER-components in this test-series.

Finally, we reverse the nature of the networks: The major

component is set to a random network [ER, Barabási and Albert

(BA) [56], or Watts-Strogatz (WS) [24] model] in which we embed

a small, but highly regular structure (Fig. 2c). The inserted

structure was chosen, such that its nodes are highly clustered (both

on level 1 and 2); the six outer nodes further show significant

variability in their neighbours’ degrees. These characteristics are

rarely observed in our random networks, which is why BtA should

identify these nodes (alongside with other outliers that might

emerge). We confirm this in a series of ER, BA, and WS networks

(n~100 nodes) with varying sparseness (edge density ranging from

1% to 50% with step-size 1%). The regular structure (7 nodes)

illustrated in Fig. 2c is added to each random network before BtA

is applied. For these networks, the 6 outer nodes of the regular

structure are classified singular in over 97% of all networks.

Additionally, the inner node (with less extreme features) is

regarded uncommon in 81% of all cases.

In conclusion, the automatic parameter determination gives

very satisfying results, which yield confidence in BtA’s ability to

identify outliers in complex networks autonomously.

Network Time-Series: A Small-World Emerging
Large complex networks are challenging to analyse; time-series of

such are even more so. We attempt to approach this challenge by

Figure 2. Network types used for testing BtA: a Network derived
from The Simpsons family-tree [54]. Nodes in very regular parts of the
network were identified singular (shaded grey) because of two
characteristics: Their neighbours’ degrees are comparatively low and
show no variation (values r and cv significantly below average). b
Schematic of large regular ring lattice combined with a minor ER-
random component (shaded grey). c A small regular structure (white
nodes) embedded into a large random network (ER, BA, or WS model).
doi:10.1371/journal.pone.0015765.g002
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first condensing networks to a compact representation—mapping a

series of changing structures to a uniform representation benefits the

identification of trends and changes of such. Therefore, all networks

have to be characterised, which we do using single node-motifs.

These are identified with BtA using six common local measures: (1)

the normalised average degree r, (2) the coefficient of variation of the

degrees of the immediate neighbours of a node cv, (3) the clustering

coefficient cc [24,57], (4) the locality index loc, (5) the hierarchical

clustering coefficient of level two cc2 [58], and (6) the normalised

node degree K . (For definitions of these measures see Methods

section.) Next, we describe the time-series of 600 networks and the

results found with BtA.

Similar to random graphs, small-world networks have a small

characteristic path length, but at the same time they exhibit a high

degree of clustering, as regular ring lattices, for example. It has

been discovered early that the combination of short paths plus

grouping is inherent to social networks; a phenomenon that

became known as six degrees of separation [59–61]. Today it is

known that small-world networks can be found in many other

domains (e.g. [2,26–28]). We thus created a network-time series in

which structures gradually change from a completely regular ring

lattice to a small-world network (see Methods section, Fig. S2).

In total we identified 5 single node-motifs, which differ in

characteristics, frequency, and time of emergence (Fig. 3): A node

according to motif 1 has relatively few connections in contrast to

its well connected neighbourhood. Different from that, nodes

corresponding to motif 2 are signified by many connections to a

rather sparsely connected neighbourhood. Motif 3-nodes have

relatively few connections and nodes in their neighbourhood are

similar in number of links and corresponding targets. Motif 4

describes rarely connected nodes whose neighbours have a diverse

number of connections; but instead of being linked between each

other, neighbours share other common targets. The final motif 5

can be best characterised by its relation to the rest of the network,

which shows a higher degree of connectivity than any node

involved in the motif. Neighbours of the motif-node further vary in

their number of connections and do not link to each other. Motifs

2, 3 and 5 appear right from the beginning of the rewiring process;

motifs 2 and 5 gradually become more common over time,

whereas 3 levels out after a transient peak. The remaining motifs 1

and especially 4 only become apparent at later stages towards

which both become more frequent. Together, BtA reveals the

increasing irregularity in network structure and it also provides

details on the characteristic connectivity patterns at different times.

Both would be valuable information if real networks were

analysed; here, with precise knowledge about the network-

changing process, the temporally dependent motif expression

levels yield another validation of the technique (detailed discussion

in File S1).

Overall, results are very satisfying and we are confident that BtA

could be successfully applied to real networks using the automatic

parameter determination.

Figure 3. Single node-motifs in emerging small-world network (Fig. S2).Vertical axes in subfigures a–c correspond to number of outlier
nodes w, number of single node-motifs k, and their frequencies, respectively. a Number of identified outliers w rising from 0 to 54. b Diversity of
node-motifs k quickly rising during the 1st re-wiring round; less increase during 2nd round; and stable during the 3rd. c Proportions of nodes
expressing identified motifs (motif frequencies). Nodes classified regular not shown. d Schematics of identified single node-motifs and their
distinguishing characteristics.
doi:10.1371/journal.pone.0015765.g003
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Discussion

In this paper we presented a method to detect single node-

motifs automatically. The main parameters of the previous routine

[41] —the smoothing kernel bandwidth plus the number of

singular nodes and motif groups—are now selected based on the

data. We further proposed a deterministic replacement for the k-

means algorithm, which is used to form the different motif-groups.

In contrast to k-means, our alternative approach can determine

the number of motifs itself and due to the lack of random elements,

clustering results are robust over multiple repetitions.

Despite our improvements to BtA certain issues and room for

further advancements remain. For example, reducing feature

vectors in dimension inevitably leads to a loss of information, but

which has to be kept withing reasonable bounds. In other words,

although 6-dimensional feature vectors were suitably represented

in the 2-dimensional plane so far [41], different networks may

require the use of more than just the first 2 principal components

in order to ensure that network characteristics are represented

properly. Thus, if the chosen number of principal components

does not account for at least 80% of the variance, their number

should be increased (Kaiser’s rule). The degree to which feature

vectors can be reduced thereby depends on the correlation

between measured values, which is specific to the analysed

network.

In cases where feature vectors can not be suitably represented in

2 dimensions, their display becomes more complicated and

verifying a good fit of the estimated probability density function

(PDF) is challenging. However, a good PDF estimate is needed in

the BtA workflow to determine outlier nodes. Problems that might

arise in these situations could possibly be circumvented by a major

change to the workflow: The use of PCA to compact information

offers the possibility to replace both the PDF estimation and

the subsequent outlier selection with a more direct and non-

parametric standard technique, which is Hotelling’s T2 (a

generalisation of Student’s t-statistic). This modification would allow

to identify outliers without the need to estimate a PDF, but the

exploration of the resulting workflow will be addressed in another

publication.

Considering the BtA workflow as presented in this paper, the

technique can be easily adapted by including different local

network measures in the analysis. Measures that take spacial

aspects of the network into account, for instance, or those

including link-weights can increase quality of the analysis. Finally,

interest might not only lie on motifs formed by outlier nodes, but

on all single node-motifs occurring in the network. In this case

regular and singular nodes are not distinguished, but all of them

have to be included in the network fingerprint.

BtA-fingerprinting of many networks has so far been prevented

by the need to choose parameters during the analysis manually.

With the improvements presented in this paper, however, it is now

possible to process large numbers of networks fully unsupervised.

Identified outliers are characteristic nodes that can provide a

fingerprint of a network; fingerprinting networks from numerous

domains allows easy characterisation and comparisons. As already

demonstrated [41], such studies can reveal important character-

istics and differences between network domains. Additionally, the

example on an emerging small-world network in this paper

showed that BtA can also be used to analyse time-series of

networks.

To encourage the use of the BtA methodology by other

researchers, we provide our implementation of the workflow

including the automatic parameter determination for download

(http://www.biological-networks.org/). Two versions of the code

exist: The first one requires Matlab (Mathworks Inc, Natick, USA)

and allows the user to apply the workflow using a graphical user

interface (Fig. S3). The other one is a command line utility that

either requires Matlab or the free alternative Octave [62] and it

can be easily used to batch process many networks.

In conclusion, we provide a robust method for systematically

discovering and classifying characteristic nodes of a network. The

distribution of node-classes results in a fingerprint, which in turn

can give a classification of whole networks, as for network motifs of

multiple nodes [63]. In contrast to classical motif analysis, our

approach can identify the individual components that are specific

to a network. Such special nodes, as hubs before, might be found

to play critical roles in real-world networks.

Methods

Local Network Measures
Network nodes were characterised with six common local

measures whose definitions are given in the following. Therefore,

let A~ aij

� �
denote the adjacency matrix of the network, i.e.

aij~1, if a link from node i to node j exists, and otherwise aij~0.

Row- and column-sums of A correspond to the in- and out-degrees of

nodes, respectively. In undirected networks, in- and out-degree are

equal and either of them can be used as a node’s degree. If links are

directed, the degree is the sum of in- and out-degree. Dividing a

node’s degree by the number of all links in the network yields the

normalised node degree K . The normalised average degree ri of a node i is

the average over all its neighbours’ degrees. (Nodes that are

directly linked to node i are called neighbours.) Likewise, the

coefficient of variation cv of the degrees of the immediate neighbours

of a node can be calculated. The neighbours’ connectivity with

each other is quantified by the clustering coefficient cci, which is the

proportion of existing connections between node i’s neighbours to

the number of all possible links between them [24,57]. The

clustering coefficient thus reflects the relative number of triangle-

shaped paths a node has—a concept that is extended to

connections between neighbours’ neighbours (further away node

node i) by the hierarchical clustering coefficient of level two cc2 [58].

Whereas the cluster coefficients quantify connectivity within a

node’s neighbourhood, the locality index loci, which is based on the

matching index (e.g. [64]), is the fraction of neighbours’ links that

connect to the same node (not necessarily a neighbour of node i).
Further details and measures can be found in the literature

[26–28,35].

In the following sections we describe how appropriate settings

for the parameters of the BtA-workflow can be found automat-

ically. Kernel-bandwidth, the number of singular nodes w, and the

number of motif regions k are discussed separately below.

Kernel-Bandwidth
In step 3 of the workflow (Fig. 1), the Parzen window approach

is used to estimate a probability density function (PDF) over all

nodes [46, 47, Chapter 4.3]. This is achieved by smoothing the

overall arrangement of reduced feature vectors, which were

obtained using principal component analysis (PCA) [45, Chapter

8] in the previous step 2. The dimensions of the smoothing kernel,

i.e. the width and breadth of the Gaussian function N 2 m,Sð Þ can

be controlled through its covariance matrix S~ sij

� �
. (Mean

vectors m are fixed to equal the data-points.) The original

publication made use of the fact that the absolute covariance

values (Vk : skk~0:05) do not matter for the estimated PDF.

However, their values relative to each other do matter and we

therefore scale them according to the standard deviation along

each principal component (PC) axis. Variability-based re-shaping
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of the kernel function improves the overall fit of the PDF to the

points (Fig. S4). A further refinement would be to tilt the Gaussian

in order to account for correlation between axes (Fig. S5);

however, the PCs are expected to show weak correlation only,

which is why we chose un-tilted kernels (for which the covariance

matrix S is zero except for the variances on the diagonal).

Number of Singular Nodes w
After assigning probabilities to all nodes (Step 3), nodes with an

exceptionally low probability come into focus: These outliers

correspond to points in the PCA-plane that are spatially separated

from larger clusters; and this separation corresponds to abnor-

malities of measured features. Due to their uncommon character-

istics, these nodes are considered singular. For humans it is usually

straightforward to identify these non-regular nodes, if interactive

visual aids are provided; we therefore implemented a graphical

user interface for the whole workflow (Fig. S3). In the following,

however, we discuss how the number of singular nodes w can be

adjusted without interaction.

To determine singular nodes, automated methods can query the

PDF that has been estimated earlier (Step 3). For example, for a

fixed number w of singular nodes, the w least probable ones can be

selected easily. Alternatively, a probability cut-off can be set, e.g. at

1% or 5%, to separate nodes into regular and singular ones. Both

these simple methods involve constants, but which have to be

chosen depending on network size to yield sensible results.

Choosing one fixed number of singular nodes w for differently

sized networks can render the majority of nodes non-regular in

comparatively small networks; vice versa, w may be too small

compared to the number of exceptional nodes in large networks. A

fixed probability cut-off does not circumvent this problem, because

the nodes’ absolute probability values are dependent on network

size. In the following, we therefore propose a flexible probability-

threshold: The cut-off does not occur at a fixed pre-defined level,

but where it yields the best separation between singular and

regular nodes.

A necessary condition for a node being considered singular is a

sufficiently low probability compared to other nodes. Additionally,

it is desirable that singular nodes appear somewhat separated from

the regular ones, which renders their classification non-arbitrary.

We therefore suggest to set the borderline between regular and

singular nodes where the steepest increase in probability among

the low probability nodes appears. Nodes with a probability below

mean �pp minus one standard deviation s(p) of all nodes’ pro-

babilities p~(pk)k~1,...,n are potentially singular. Given that the

probabilities p~(pk)k~1,...,n are sorted increasingly, the number of

singular nodes w is then chosen as

w~arg max
k : pkv�pp{s pð Þ

pkz1{pk, ð1Þ

or w~0, if probabilities undershoot the mean only minimally (i.e.

A= k : pkv�pp{s(p)).

Number of Motif Groups k
Once nodes are classified as either regular or singular (Step 4),

clusters of singular nodes (motif-groups) are identified using k-means

[65, Chapter 20.1]. The k-means clustering algorithm requires the

number of clusters k to be chosen a priori; the actual procedure

then determines k centroids and assigns each node to the closest

one of them. Choosing k too low results in clustering errors,

because multiple motif-groups are falsely considered as one.

Conversely, too many clusters split motif-groups into non-existing

sub-groups. Determining a suitable k is thus crucial for automating

the workflow and we come back to this issue later. Even if k is

chosen adequately, clustering results are not guaranteed to be

satisfactory when using k-means: The algorithm initially chooses

the cluster-centroids at random, but their actual distribution

impacts on the quality of clustering results [66]. Attempts to

optimise the centroid initialisation have been made (e.g. the

k++2algorithm [67]), but random effects still remain; we therefore

suggest a deterministic replacement for k-means.

Optimal groupings of singular nodes consider well separated

nodes to be in different clusters, whereas relatively close ones are

grouped together. The standard deviations along each PC-axis can

serve as a threshold for closeness and we consider each of the

singular nodes to occupy a certain volume in the PCA-plane, i.e.

an ellipse-shaped area centred on it. All ellipses have the same

dimensions, which equal the standard deviations along the two

axes. Nodes are then assigned to the same motif-group if all their

ellipses constitute a connected area (Fig. 4). Practically, this idea

can be implemented in 3 steps:

1. Similar to an adjacency matrix, create a binary overlap-matrix

O~(oij) in which nodes are connected if their ellipses overlap;

otherwise they are not. For two nodes i and j let x~(x1, x2) and

y~(y1, y2) denote their corresponding points on the PCA-plane,

i.e. the centres of their ellipses with dimensions s1 and s2. Using

the rescaled centres cx~(x1=s1, x2=s2) and cy~(y1=s1, y2=s2)
the entry of the overlap-matrix is defined by

oij~
1, d2 cx,cy

� �
v1,

0, otherwise,

(
ð2Þ

where d2(:,:) is the Euclidean distance.

2. Determine a corresponding clique-matrix C~(cij) that specifies

whether a path—a connected area of ellipses—between any two

nodes exists or not. Paths or cliques can be determined through

powers Ok~ o
kð Þ

ij

� �
of the overlap-matrix O via

cij~
1, A k [ N : o

kð Þ
ij w0,

0, otherwise:

(
ð3Þ

Figure 4. Example of 2 clusters (left, right) with 3 points each
(1–3, 4–6). Ellipses are centred on each point with dimensions
corresponding to standard deviations s along PC-axes. A set of points is
considered a clique, if the area of all their ellipses is connected (e.g. {1},
{1, 2}, or {1, 2, 3}; but not f2,3g). A maximal clique is called a cluster (i.e.
{1,2,3} or {4,5,6}) and is used to define a distinct motif-group.
doi:10.1371/journal.pone.0015765.g004
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3. Colour all cliques differently, which finally yields the motif-

groups.

Note that this procedure has no parameter controlling the

number of motif-groups, but these are identified automatically.

Instead of using this method to actually group nodes it might also

serve as a pre-processing step in order to determine the number of

clusters k for k-means. The drawback of this simple approach is

that long elongated clusters can result when nodes are widely

distributed, but connected by a chain of nodes that are just less

than one standard deviation apart from each other. However, we

have not observed such formation in practical applications.

Generation of Small-World Networks
The prevalence of small-world networks has risen questions

about their generating mechanisms and different explanatory

models have been proposed [24,68]. We use one of them here in

order to generate a series of networks: Watts and Strogatz

described a rewiring procedure by which a regular ring-lattice is

randomly rewired by which it becomes a small-world network

[24]. This is a step-wise process, which allows to sample a network

at each intermediate stage. Starting with a completely regular

structure, over time, networks become increasingly perturbed (Fig.

S2). In total, we sampled 600 networks (à 200 nodes), which were

then analysed with BtA, to determine the single node-motifs that

evolve over time.

Supporting Information

File S1 Supplementary figures, notes on software implementa-

tion, notes on run-time complexity, and detailed discussion of the

small-world network results.

(PDF)
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