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Abstract

Glioma is the most common form of primary brain tumor. Demographically, the risk of occurrence increases until old age.
Here we present a novel computational model to reproduce the probability of glioma incidence across the lifespan.
Previous mathematical models explaining glioma incidence are framed in a rather abstract way, and do not directly relate to
empirical findings. To decrease this gap between theory and experimental observations, we incorporate recent data on
cellular and molecular factors underlying gliomagenesis. Since evidence implicates the adult neural stem cell as the likely
cell-of-origin of glioma, we have incorporated empirically-determined estimates of neural stem cell number, cell division
rate, mutation rate and oncogenic potential into our model. We demonstrate that our model yields results which match
actual demographic data in the human population. In particular, this model accounts for the observed peak incidence of
glioma at approximately 80 years of age, without the need to assert differential susceptibility throughout the population.
Overall, our model supports the hypothesis that glioma is caused by randomly-occurring oncogenic mutations within the
neural stem cell population. Based on this model, we assess the influence of the (experimentally indicated) decrease in the
number of neural stem cells and increase of cell division rate during aging. Our model provides multiple testable
predictions, and suggests that different temporal sequences of oncogenic mutations can lead to tumorigenesis. Finally, we
conclude that four or five oncogenic mutations are sufficient for the formation of glioma.
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Introduction

Glioma is the most common form of primary brain tumor [1].

Glioma commonly manifests itself as a high-grade tumor called

glioblastoma, a highly malignant and invasive tumor with median

patient survival of 12 months from diagnosis; lower-grade gliomas

increase in malignancy over time, with associated increases in

mortality [2].

The cellular mechanisms giving rise to glioma are subject to

intense research. The incidence of glioma is not significantly

affected by environmental factors such as UV light and carcinogen

exposure, due to the protective influence of the thick skull and the

blood-brain barrier. In addition, there are no known heritable

factors in the risk of glioma occurrence. These tumors appear to

arise idiopathically in a random manner throughout the popula-

tion [3]. Hence, glioma formation is an ideal test-case for

investigating how fundamental mechanisms on the single-cell

level give rise to cancer.

Increasing age is strongly associated with higher incidence and

increased malignant grade for all grades and types of glioma [4,5].

Age is in fact the single most robust factor influencing glioma

incidence, malignancy, and patient survival [1,2,4]. Insights into

changes that occur in the aging brain and the cells that originate

the tumor are therefore essential for understanding this increased

risk of oncogenic transformation and tumorigenesis.

The putative cell-of-origin of glioma is the neural stem cell

(NSC), which normally gives rise to new neurons and glial cells in

the adult brain. Experimentally causing oncogenic mutations in

this lineage leads to the formation of malignant tumors [6–8], and

gliomas cluster near germinal centers of the brain [9]. Proliferative

cells within the tumor share immunomarkers with NSCs [10,11].

NSCs already exist in a proliferative state, are capable of

differentiating into glial cell types, and can migrate through tissue

[12,13]. Transplantation of oncogenically-transformed mouse

neural stem cells into syngeneic mice reliably leads to the

formation of a tumor which recapitulates the proliferative and

invasive phenotype of human glioma [14,15]. Together, these

studies strongly implicate the neural stem cell as the most likely

cell-of-origin of glioma. In this report we show that modeling the

accumulation of random mutations during cell division in this stem

cell population can predict glioma incidence across the lifespan in

the human population. In particular, we propose a model that
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accounts for differential weightage and temporal ordering of

oncogenic mutations.

Materials and Methods

The model includes empirical data collected through literature

review. The mutation frequency was taken directly from a

published estimate and assumed to be constant across the lifespan

[16]. A small subset of mutations were deemed to have oncogenic

potential in this cellular compartment while all other mutations are

assumed to be neutral for this cancer type [17]. In this approach,

we used the Poisson-approximation of a binomial distribution for

computing the probabilities to have x oncogenic mutations. First

we compute the expected number of genetic mutations a cell has

had at a certain age, and based on that then compute the

probability of having x oncogenic mutations. The mutation rate is

therefore independent of whether or not the gene is oncogenic.

The exponentially decreasing number of neural stem cells was

calculated across the lifespan based on the published data for

human tissue [18]. Results of electron microscopy-based charac-

terization is shown in Figure 3 of [18], which used 200 micron

thick sections. Results of immunohistochemistry-based character-

ization are shown in Figure 1 of [18], which used 30 micron thick

sections. These data are in agreement - *144 cells per 200

micron-thick section (averaging the two locations described above)

and *22 DCX+ cells per mm2 in a 30 micron-thick section

(estimated from the graph in Figure 1r of [18]). These data both

yield approximately 720 DCX+ cells per mm3. To estimate KI67+
proliferative cells, not DCX+ cells, we multiplied the values for

KI67+ cells from the relevant graph (Figure 1s of [18]) by 33, just

as we multiplied the values for the DCX+ cells from the other

graph (Figure 1r of [18]) by 33. This provides values per mm3. In

agreement with the data presented in Figures 1 and 3 of [18], their

Figure 2c shows that the tract is 1 mm 6 1 mm wide. It is also

10 mm long (the scale bar represents 500 microns). So the number

of KI67+ cells per mm3 is multiplied again by 10 to estimate the

total number of KI67+ cells. The graph of KI67+ cells at each

time point was then extrapolated to estimate this population across

the entire lifespan. Overall, we computed the number of NSCs at

birth to be 237600, which was used as the initial value of the

modeled number of NSCs during aging (N0).

The cell division rate was calculated in NSCs derived from the

young adult and aged adult mouse brain [13]. The number of cell

divisions in a given time was calculated from live-cell time-lapse

imaging over a 48 hour period. Actively-cycling young adult NSCs

divided 1.37 times in 48 hours while actively-cycling aged adult

NSCs divided 1.74 times in 48 hours. Adjusted for time, actively-

cycling young adult NSCs divide 251 times per year while actively-

cycling aged adult NSCs divide 318 times per year. For the

estimate that is incorporated in the model, we have used a linear

interpolation between these two numbers across the human

lifespan. These estimates were assumed relevant for the population

of NSCs in the adult human brain (Fig. 1).

The model was implemented in MATLAB (Mathworks Inc.). A

time step dt of 0.001 years was used for calculating the prevalence.

The computation of the incidence was done by computing the

numerical differential of the prevalence over time. Bootstrapping

was used to compute the 95 % confidence interval of the

incidence, as shown in Fig. S1. 1000 bootstrap samples of size

100 000 were computed.

Two of the model parameters (d describing exponential

decrease of NSCs with time and s included in Eq. 5) were not

assessed from experimental findings. Depending on r(t) and kmin,

different incidence curves are obtained (i.e. the absolute values and

the position of the curve peak were different). We have adapted s

and d for the different scenarios, in order for the incidence curve

to match with the demographic data [1]. A match could only be

obtained for kminw~4. In Fig. 2, s~1 and d~0:1067 were used

for the incidence curve based on kmin~3, while for kmin~4 we

used s~10 and d~0:028. For the simulations using kmin~5 and

kmin~6 we set s~7500, d~0:038 and s~10 000 000, d~0:0497,

respectively.

Results

To create our model, we included empirical data representing

age-related changes in neural stem cell number and behavior. A

population of neural stem cells is present in the human brain at

birth but declines exponentially thereafter [18]. Experiments in

rodents demonstrate that the exponential decline in neural stem

cell number continues across the lifespan [13,19]. This depletion

of the stem cell population is due to cell death and terminal

differentiation. We have therefore approximated the size of this

cell population (N(t)) with an exponential interpolation of the data

from the human brain. Further experiments have demonstrated

that the remaining population of NSCs in the aged brain have

dysregulated cell cycle kinetics [13]. Individual remaining stem

cells have an increased likelihood of re-entering the cell cycle,

resulting in an increased number of cell divisions in a given period

of time (r(t)). We have approximated this behavior using a linear

interpolation. Our model incorporates these empirically-deter-

mined changes in neural stem cell number and behavior (Fig. 1).

NSCs accumulate mutations in every cell cycle. The process of

genome replication during cell division is imperfect, as a certain

number of mutations occur and some of these mutations will

remain unrepaired. The number of mutations incurred during a

single cell division has been estimated [16]. According to their

assessment, we denote by m~10e{7 the probability for a gene in

the coding region to mutate due to a single cell division. No single

mutation leads to oncogenesis, so multiple hits are necessary for

complete oncogenic transformation [20,21]. Cancer is character-

ized by a number of cellular changes, including loss of cell cycle

control, self-sufficiency in growth factor signaling, resistance to

anti-growth signals, escape from apoptosis, invasion and neovas-

cularization [22]. When Hanahan and Weinberg first described

these hallmarks of cancer, they proposed that approximately six

mutations would be required to dysregulate all six of these cellular

activities [22]. Yet now researchers appreciate that mutation of a

single multi-functional protein can predispose alterations to

multiple cellular activities [14,23]. Since the cell is dependent

upon semi-redundant regulatory pathways to control cell cycle

progression and other activities [20], loss of one major tumor

suppressor is not sufficient to create a tumor [21] and multiple

regulators must be disrupted to achieve oncogenic transformation

[14,24]. Of the 18 440 (ntotal ) protein-encoding genes in the

human, 522 have a causal role in human cancer and nglioma~29 of

these (Table S1) have a demonstrated role in promoting

gliomagenesis [17]. We assessed how many mutations in this set

of oncogenes are required to achieve tumor formation. Based on

this minimum number of mutations (kmin), our model computes

the total probability for a single NSC to become oncogenically

transformed. This integrative probability is calculated by summing

up the individual probabilities according to the following equation:

p(t)~
X29

i~kmin

pi(t), ð1Þ

Modeling the Origins of Glioma
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where pi(t) denotes the probability for i oncogenic mutations to

have occurred at time t. We have estimated pi(t) using the

experimentally assessed parameters N(t), r(t) and m. Based on the

number of protein-coding and gliomagenesis-relevant genes, the

probability for any one of the 29 oncogenes to become mutated

from cell division is given by ponc~nglioma
:m. Assuming that any

gene mutates with equal probability, the occurrence of oncogenic

mutations can be approximated by the binomial distribution. It

follows that pi(t) is given by:

pi(t)~
R(t)

i

� �
:pi

onc
:(1{ponc)R(t){i, ð2Þ

where R(t) is the number of cell divisions a NSC has undergone

until time t. It is computed by integrating the cell division rate r(t)
across the age span until time t.

Given that R(t) and ponc take sufficiently high (w100) and low

(v0:0001) values respectively, the Poisson distribution is well-

suited as an approximation for this otherwise computationally very

demanding formula:

pi(t)~
li

i!
:e{l, ð3Þ

with l(t)~R(t):ponc. The temporal sequence of oncogene

mutations has been shown to be an important factor in tumor

formation [25,26], and so we have also accounted for it in our

model. Given that there are i! possibilities for i mutations to occur,

Eq. 3 becomes:

pi(t)~
s

i!

li

i!
:e{l, ð4Þ

where the scalar value s represents the number of specific

mutational sequences necessary for oncogenic transformation. For

kmin~5, we find s~7500 to be an appropriate value in order for

the incidence curve to be in numerical accordance with the

demographic data (Fig. 2). This means that on average 7500
different sequences of mutations exist (for the different scenarios,

i.e. 5, 6,…, 29 oncogenes affected), which can ultimately lead to

oncogenic transformation.

The probability for a single cell to become oncogenically

transformed is denoted by p(t). Accordingly, the probability for

glioma formation overall is proportional to the probability that at

least one of all the NSC becomes transformed:

pglioma(t)~1{(1{p(t))N(t), ð5Þ

where N(t)~N0e{d:t is the estimated number of NSCs at time t.

Figure 1. Modeled number and cell division rate of NSCs. (A) Number of NSCs during aging. The initial number of cells was estimated based
on [18]. The number of NSCs is given by N(t)~N0e{d:t using d~0:038. (B) Modeled cell division rate over time. As shown in [13], NSCs increase their
rate during aging. We have approximated this behavior using a linear interpolation from 251 to 318 divisions per cell and year.
doi:10.1371/journal.pone.0111219.g001

Figure 2. Influence of kmin on location of peak incidence.
Representative incidence curves for kmin~3 (magenta), kmin~4 (cyan),
kmin~5 (blue) and kmin~6 (green). Only for kmin§4 can the condition
of peak incidence at approximately 80 years be fulfilled. Incidence
curves generated by the model for kmin~4, 5 and 6 are in accordance
with the demographic data from [1] (red crosses: mean incidence of age
groups, red lines: spans of age groups), with kmin~6 yielding the best
fit. Confidence intervals are shown in Fig. S1.
doi:10.1371/journal.pone.0111219.g002
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Hence, the parameter d describes the decay of the NSC

population over time, and so is in principle directly relatable to

empirical data. We have adapted d such that the resulting

incidence curve matches the demographic data, while being

qualitatively in accordance with experimental findings in the

mouse [13,19].

The prevalence of glioma is then proportional to pglioma(t).

Since the units from the demographic datasets are with respect to

100 000 person-years, we compute the prevalence by multiplying

pglioma(t) by 100 000. From this, the incidence is computed by

calculating the derivative. Since there are various time-varying

parameters in the model, an analytical differentiation comprises a

too extensive formula. We therefore assess the incidence numer-

ically. The obtained incidence curve is shown in Fig. 2 and

resembles the demographic data.

Figure 3. Effect of increasing cell division rate. (A) Modeled incidence of glioma (green) under constant cell division rate (r(t)~251
divisions

year
).

Model parameters kmin~5, s~8800 and d~0:0333 were used in order to match with the demographic data (red crosses: mean incidence of age
groups, red lines: spans of age groups). The increasing proliferation rate of NSCs is therefore not a necessary condition for the incidence curve to
match the demographic data, since similar results are obtained after changes in the model parameters s and d . (B) Number of NSCs over time, as
used for the incidence curve shown in (A) (black) and for the scenario where cell division rate increases linearly (Fig. 2, blue). Small changes in the
number of NSCs over time are sufficient to make up for the constant cell division rate. It remains an empirical question which estimates of N(t) and
r(t) are correct in the adult human, since these are extrapolated from the model, the young human, and the aging rodent. (C) Incidence of glioma as
derived from our model, for increasing (blue) and constant (green) cell division rate during aging. Model parameters are the same (kmin~5, s~7500,
d~0:038). The green curve is the predicted incidence by the model if the proliferation rate was constant, and so leads an estimate of the net effect of
the increase. Overall, our model suggests that the increase in cell-cycle re-entry substantially increases glioma formation. (D) Prevalence of glioma for
increasing (blue) and constant (green) cell division rate. As shown in Fig. S2, the results are qualitatively confirmed also for kmin = 4.
doi:10.1371/journal.pone.0111219.g003
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The actual incidence of glioma across age demographics has

been documented by The Central Brain Tumor Registry of the

United States [1]. We have used these published data to provide a

fit for the incidence and prevalence of glioma across the lifespan

(Fig. 2). The model parameters s and d were adapted in order to

match with these incidence rates. The incidence curves obtained

from our model for kmin~4, kmin~5 or kmin~6 resemble these

demographic data. Also for kminw6 is it possible to achieve

agreement, and so our model yields a lower bound for the number

of mutations required for oncogenic transformation. However,

with increasing kmin the model parameters s and d need to change

too. In particular, the parameter s strongly increases. For kmin~4,

kmin~5 and kmin~6 we find s~10, s~7500 and s~10 000 000
to be well-suited, respectively.

The biological meaning of parameter s in Eq. 4 is twofold. It

captures that different oncogenes can yield the same transforma-

tion hallmarks [6,24], and so multiple sequences of the same

length could give rise to glioma. Additionally, s accounts for the

possibility that different temporal sequences of the same oncogenes

could lead to glioma formation. In the classical multistage model,

there is only one temporal order that can achieve transformation.

Importantly, since s denotes an average number of mutations, it

could be different for different sequence lengths i. With increasing

i, si can grow exponentially because of the factorials in the

denominator of Eq. 4. For simplification and due to lack of

detailed empirical knowledge, we chose to use the same s for all

sequence lengths.

Since no studies in the human have directly demonstrated

increased cell division in NSCs, we have created a related model

that assumes no age-related changes in cell division rate, cell cycle

length or likelihood to re-enter cell cycle. This adjusted model

yields the same results in glioma incidence and required mutation

number if the exponential decrease in proliferative cell number is

adjusted accordingly (Fig. 3A). This age-related change is there-

fore not a necessary condition of the model. Future labelling

studies of the proliferative cell population in the human brain will

help to evaluate the relative accuracy of these two models.

Interestingly, the model quantifies the net effect of an increasing

cell division rate while the other parameters are the same (Fig.

3CD). These results suggest that this increase of cell division rate

almost doubles the occurrence of glioma.

Discussion

Mathematical modeling has been used to create predictions

regarding the growth of tumors [27,28] and response of individual

tumors to surgical resection or radiotherapy [29,30]. The

incidence of tumors in a human population has also been modeled

[31,32]. However these models of cancer incidence did not employ

empirical measures of age-related changes in cellular dynamics,

nor did they incorporate experimental knowledge on glioma-

related proto-oncogenes. Here we present a model to predict the

probability of glioma incidence across the lifespan based on neural

stem cell dynamics in the individual organism.

We find that a simple model using recent estimates of biological

parameters on the single-cell level can account for demographic

observations. Along these lines, we provide a modified and

extended version of the well-established Armitage-Doll model

[31]. In contrast to this classical approach, we do not restrict our

model to a specific number of oncogenic mutations. Instead, we

account for all the numbers of oncogenic mutations that possibly

can occur (i.e. mutations of kmin to 29 oncogenes, see Eq. 1). Our

model therefore does not rely on the (experimentally unsupported)

assumption of the classical Armitage-Doll model that only a

specific number of oncogenes must be mutated for oncogenic

transformation.

Since the parameters of our model have a direct biological

meaning, further biological data can be incorporated and

predictions can be made. For example, previous theories have

yielded various estimates for the minimal number of oncogenic

mutations required for carcinogenesis [33–35]. Notably, we come

to the conclusion that a minimum of 4 or 5 oncogenic mutations is

sufficient for tumorigenesis, in contrast to 6-7 mutations as

implicated by the classical Armitage-Doll model [31] and as

predicted by Hanahan and Weinberg [22]. kmin~5 is higher than

experimental results which demonstrate that NSCs can be

oncogenically transformed successfully with only three oncogenic

mutations specifically affecting the PTEN, p53 and Rb pathways

[14,24,36]. However, many human gliomas regardless of grade

demonstrate 5 mutations, namely affecting EGFR, PTEN,

P16INK4A, TP53 and MDM2 [3]. Therefore our model is in line

with empirical studies on the number of mutations required to

achieve oncogenic transformation. Many mutations affecting

tumor suppressor pathways will cause a cell to undergo

senescence, slowing the cell division rate and increasing the

likelihood of apoptosis. Very few sequences of mutation are likely

to bypass this protective response. So it is easy to imagine that few

scenarios (s~10) are compatible with a low number of mutations

achieving oncogenic transformation (kmin~4), while more scenar-

ios (s~7500) can achieve oncogenic transformation with a larger

number of mutations (kmin~5). Considering that different

oncogenic mutations yield the same hallmark, and that multiple

temporal sequences of the same mutations could yield the same

result, we find s~7500 more plausible than s~10. This model

therefore supports the conclusion that five oncogenic mutations

are sufficient to achieve oncogenic transformation and initiate

gliomagenesis.

Our model accounts for the possibility that some oncogenes,

due to more interactions, play a more central role than others [37].

Therefore, fewer mutations of such hub genes might be sufficient

for the formation of glioma. It is possible that altered function of

such hub genes could lead to genomic instability and increased

mutation rate. However, one assumption in our model is the stable

accumulation of mutations in every cell cycle. While this number

of mutations have been estimated in proliferative cell types [16],

this rate may indeed depend on prior changes. With age, the

genome becomes more unstable due to shortened telomeres,

increased mutation load and chromosomal abnormalities [38]. All

of these changes could increase the likelihood of mutations or

disrupt the efficacy of repair mechanisms. The net mutations

incurred during each division may therefore increase with age.

However any age-related changes to the mutation rate depending

on prior mutation load have not been empirically determined so

we were unable to incorporate this age-related factor into our

calculations. We have therefore estimated that the mutation rate

remains constant across the lifespan.

However our model does allow us to incorporate different

weightage for mutations, i.e. that some mutations are less likely to

co-exist than others, as has been established by the Cancer

Genome Atlas effort (http://cancergenome.nih.gov/) [21,25]. In

Eq. 4 the denominator increases much faster than the nominator

with the length of the modeled sequence of oncogenes, and so long

sequences are unlikely to occur. Hence, mutational combinations

that are included only in the long sequences are unlikely to co-exist

overall.

In light of evidence that a temporal sequence of mutations may

be crucial in tumorigenesis [25,26], it is notable that our model

considers variation in the number and order of oncogenic
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mutations needed to invoke glioma formation. Our model thus

usefully explores the relationship between these experimentally

tractable variables, particularly kmin, d , s, N(t) and r(t).
Similar to previous researchers [32], we have included an age-

related decline in the number of proliferative cells, which is

responsible for the characteristic peak of the incidence at 80 years.

In contrast to their linear decrease, we model an exponential

decrease of the proliferative pool which matches better with

experimental findings in this cell population [13,18,19]. In

addition, we employ empirically-derived results to estimate cell

cycle length [12], the mutation rate during each cell cycle [16] and

the fraction of genes that promote oncogenic transformation upon

mutation ([17] and Table S1). Together, these data can be used to

predict the age-associated incidence of glioma in the human

population [1] without the need to assert differential susceptibility

throughout the population which is not supported by biological

evidence [39].

It is possible that other cell types besides the neural stem cell

give rise to glioma. One recent study demonstrated that mature

cells such as neurons can be forced to undergo oncogenic

transformation using cell-specific targeting of two major tumor

suppressor pathways [36], however it is not clear that such

mutations could randomly occur in a post-mitotic cell population.

Alternatively, glial progenitor cells within the white matter have

been proposed to be the true glioma cell-of-origin [40,41].

Empirical data on these cells are scarcer, so we are currently

unable to estimate the size of this population and the rate of glial

progenitor cell division across the lifespan (key variables for

implementing this model). Future studies may help to address

whether the cell cycle kinetics of this population can also predict

actual glioma incidence in the human population. Variability in

the cellular origin as well as the underlying genetic lesions of

glioma could in part explain the extraordinary heterogeneity in

this tumor type. Yet the evidence most strongly implicates the

multi-potent neural stem cell as the most likely cell of origin, so we

have focused on this cell type in our model.

There is evidence to suggest the molecular pathogenesis of high-

grade gliomas (presenting as primary glioblastoma) is different to

that of low-grade gliomas (presenting as grade II-III astrocytoma

or oligodendroglioma, often progressing to secondary glioblasto-

ma). These two types of brain tumor have different genetic and

epigenetic profiles, with different initiating mutations [42]. In the

future, this model could be adapted to include such different

constraints on molecular pathogenesis to distinguish between the

incidence rates of low-grade and high-grade glioma.

Overall, we provide a model that uses experimentally obtained

parameters on neural stem cell proliferation and yields results

which match with actual demographic data in the human

population. We demonstrate the consistency of our model which

incorporates estimates of neural stem cell number, cell division

rate, mutation rate and number of oncogenes. Importantly, our

model supports the hypothesis that glioma is caused by randomly

occurring oncogenic mutations within the neural stem cell

population of the adult brain.

Supporting Information

Figure S1 Confidence intervals for modeled incidence.
95 % confidence intervals (shaded) for the modeled incidence rates

during aging, as computed by bootstrapping. The modeled

incidence curve (blue line) is the same as shown in Fig. 2 using

(A) kmin~4, s~10 and d~0:028, (B) kmin~5, s~7500 and

d~0:038 and (C) kmin~6, s~10 000 000 and d~0:0497.

(PDF)

Figure S2 Effect of increasing cell division rate for
scenario with kmin~4. (A) Modeled incidence of glioma (black)

under constant cell division rate (r(t)~251
divisions

year
). Model

parameters kmin~4, s~10:2 and d~0:0233 were used in order to

match with the demographic data (red crosses: mean incidence of

age groups, red lines: spans of age groups). The increasing

proliferation rate of NSCs is therefore not a necessary condition

for the incidence curve to match the demographic data, since

similar results are obtained after changes in the model parameters

s and d . (B) Number of NSCs over time, as used for the incidence

curve shown in (A) (black) and for the scenario where cell division

rate increases linearly (Fig. 2, cyan). Small changes in the number

of NSCs over time are sufficient to make up for the constant cell

division rate. It remains an empirical question which estimates of

N(t) and r(t) are correct in the adult human, since these are

extrapolated from the model, the young human, and the aging

rodent. (C) Incidence of glioma as derived from our model, for

increasing (cyan) and constant (green) cell division rate during

aging. Model parameters are the same (kmin~4, s~10, d~0:028).

The green curve is the predicted incidence by the model if the

proliferation rate was constant, and so leads an estimate of the net

effect of the increase. Overall, as for kmin~5 our model suggests

that the increase in cell-cycle re-entry substantially increases

glioma formation. (D) Prevalence of glioma for increasing (cyan)

and constant (green) cell division rate.

(TIFF)

Table S1 Proto-oncogenes implicated in glioma forma-
tion. Information on the 29 proto-oncogenes that have been

implicated in the formation of glioma. The COSMIC Cancer

Gene Census is a regularly-updated catalogue of somatic cell

mutations causally implicated in cancer: http://cancer.sanger.ac.

uk/cosmic/census. Of all genes listed, we have selected genes with

a known role in glioma (including subtypes such as glioblastoma,

astrocytoma, oligodendroglioma). An additional 6 genes were

listed in the COSMIC gene database as being implicated in ‘‘other

tumor types’’. These genes, KRAS, MYC, CDKN2A(p16),

CDKN2A(p14), CTNNB1(beta-catenin), and ERBB2(HER2),

have indeed been implicated in gliomagenesis in other studies

[43–46], so we have included them in this list. The probability of

any one of the oncogenes being mutated is equivalent to

ponc~nglioma
:m, where nglioma is the number of oncogenes involved

in glioma formation and m is the probability for genetic mutation

due to a single cell division.

(PDF)
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