
Recap

Terminology	recap

• Variable	or	state
• Differential	equation
• Initial	condition
• Trajectory
• Parameter
• Steady	state
• Transient	behaviour
• Perturbation
• Ordinary	differential	equations	(ODE)
• 3	dimensional	ODE

Terminology	recap

• Phase	space/state	space
• Vectorfield
• Fixed	point	(stable/unstable,	focus/node)
• Nullcline
• Saddles,	separatrix
• Bistability

Dynamical	Systems

Yujiang.wang@ncl.ac.uk
Lecture	3	of	5

Overview
• What	are	dynamical	systems?
• How	to	interpret	a	differential	equation
• How	to	analyse differential	equation	systems
• How	to	solve	differential	equation	systems
• Stability	analysis,	multistability
• Oscillatory	solutions
• Parameter	variations,	bifurcations
• Choice	of	cool	stuff:	Chaos,	turbulence,	spatio-
temporal	systems,	slow-fast	systems,	
transients,	and	more.

Numerically	solving	differential	
equations

Numerically	solving	differential	
equations

• Why?
– Very	rare	that	we	can	analytically	solve	equations
– Implementation	speed
– Convenience

• Why	not?
– Sometimes	long	simulation	times
– Inaccuracies
– Variations	between	different	solvers	

Numerically	solving	differential	
equations:	methods

• Euler
• Heun
• Runge-kutta

Euler	method

Example	equation:	dydt=f(t,y)
Solves	in	a	fixed	step	(h=1)	iterative	manner

Lets	say	initial	condition,	y0 = 1 and f(t,y)=y

If	we	start	with	y=0 at	time(t)=0,	how	much	
does	y change	between	t=0 and	t=4?

Euler	method

Example	equation:	dydt=f(y)
Solves	in	a	fixed	step	(h=1)	iterative	manner

Lets	say	initial	condition,	y0 = 1 and f(y)=y

Tim
e	->

Euler	method

• Not	very	accurate	if	
h is	too	large

Euler	method

• Not	very	accurate	if	
h is	too	large

• Alternatively:	Not	
very	accurate	if	the	
change	in	y,	relative	
to	the	change	in	t
(i.e.	h)	is	too	large

Euler	method

Euler	method:	another	example

Euler	method:	another	example

• In	phase	space

Euler	method:	code

Euler	method
• Known	as	a	fixed	step	solver	since	h is	a	constant	(in	
these	examples	always	h=1)

• Easy	to	implement	
• Predictable	runtimes	(scales	linearly	with	number	of	
time	steps)	

• Easily	adapted	to	incorporate	delays	e.g.	where	
dydt=f(y,t-τ)

• Easily	adapted	to	incorprate noise	e.g.	dydt=f(y,t)+w
• Can	be	slow	and	inaccurate	compared	to	other	
solvers...

• Uses	information	from	two	points
– Change	in	y at	y(t)
– Change	in	y	at	predicted	y(t+Δt)
– dydt= y(t) + h/2 (f(y,t) + f(t+Δt,y+h f(y,t)))

Heun’s method

Heun’s method
• Uses	information	from	two	points

– Change	in	y at	y(t)
– Change	in	y at	predicted	y(Δt)
– dydt= y(t) + h/2 (f(y,t) + f(t+Δt,y+h f(y,t)))

Heun’s method

Same	as	Euler’s	method
• Uses	information	from	two	points

– Change	in	y at	y(t)
– Change	in	y at	predicted	y(Δt)
– dydt= y(t) + h/2 (f(y,t) + f(t+Δt,y+h f(y,t)))

Heun’s method
• Uses	information	from	two	points

– Change	in	y at	y(t)
– Change	in	y at	predicted	y(Δt)
– dydt= y(t) + h/2 (f(y,t) + f(t+Δt,y+h f(y,t)))

Euler’s	method
• Uses	information	from	one	point

– Change	in	y at	y(t)

Comparing	Euler	and	Heun methods

Euler Heun

Heun’s method	code

Heun’s method

• Known	as	a	second	order	method
• Is	more	computationally	expensive	than	Euler’s	
method	for	the	same	step	size	(two	function	
evaluations)

• Outperforms	Euler’s	method	for	the	same	step	
size

• Can	incorporate	noise	(more	complicated	though)
• Can	incorporate	delays	(again,	more	complicated)
• Still	not	the	best	though...

Runge Kutta
• Fourth	order	solver
• In	Heun’s method	the	mean	between	the	start	
and	end	points	is	taken

• In	Runge Kutta different	weights	are	given	to	
different	points

Runge Kutta code

Runge Kutta’s method
• Known	as	a	fourth	order	method
• Is	more	computationally	expensive	than	Euler’s	
method	for	the	same	step	size	(four	function	
evaluations)

• Outperforms	Euler’s	method	for	the	same	step	
size

• Outperforms	Heun’s method
• Can	incorporate	delays	(complicated)
• Difficult	&	complicated	to	include	noise	(ongoing	
research)

Error	tolerance

• Can	estimate	the	error	made	at	each	step	(in	
an	iterative	manner)

• This	error	is	called	the	absolute	error	
• Can	then	calculate	the	relative	error	
(absolute	error/current	state)

• We	can	tell	the	Matlab solvers	what	errors	we	
can	tolerate:

• options =	odeset(’RelTol',1e-3,’AbsTol',1e-6)
ode45(@odefunc,timespan,initialConditions,options,…)

Variable	step	solvers

Final	words	of	caution

• When	simulating	a	new	system	it	is	always	
worth	checking	the	results	with	different	
solvers	and	error	tolerance	settings

• Especially	when	expect	your	dynamics	to	
change	slowly,	but	with	sudden	fast	bursts	of	
activity

• Numerical	solutions	are	ALWAYS	ONLY	AN	
APPROXIMATION

