Recap

Terminology recap

- Variable or state
- Differential equation
- Initial condition
- Trajectory
- Parameter
- Steady state
- Transient behaviour
- Perturbation
- Ordinary differential equations (ODE)
- 3 dimensional ODE

Terminology recap

- Phase space/state space
- Vectorfield
- Fixed point (stable/unstable, focus/node)
- Nullcline
- Saddles, separatrix
- Bistability

Dynamical Systems

Yujiang.wang@ncl.ac.uk
Lecture 3 of 5

Overview

- What are dynamical systems?
- How to interpret a differential equation
- How to analyse differential equation systems
- How to solve differential equation systems
- Stability analysis, multistability
- Oscillatory solutions
- Parameter variations, bifurcations
- Choice of cool stuff: Chaos, turbulence, spatiotemporal systems, slow-fast systems, transients, and more.

Numerically solving differential equations

Numerically solving differential equations

- Why?
 - Very rare that we can analytically solve equations
 - Implementation speed
 - Convenience
- Why not?
 - Sometimes long simulation times
 - Inaccuracies
 - Variations between different solvers

Numerically solving differential equations: methods

- Euler
- Heun
- Runge-kutta

Solves in a fixed step (h=1) iterative manner

Example equation: dydt = f(t,y)

Lets say initial condition, $y_0 = 1$ and f(t,y) = y

If we start with y=0 at time(t)=0, how much does y change between t=0 and t=4?

Solves in a fixed step (h=1) iterative manner

Example equation: dydt=f(y)

Lets say initial condition, $y_0 = 1$ and f(y) = y

$$y_1 = y_0 + hf(y_0) = 1 + 1 \cdot 1 = 2.$$
 $y_2 = y_1 + hf(y_1) = 2 + 1 \cdot 2 = 4,$
 $y_3 = y_2 + hf(y_2) = 4 + 1 \cdot 4 = 8,$
 $y_4 = y_3 + hf(y_3) = 8 + 1 \cdot 8 = 16.$

Not very accurate if
 h is too large

- Not very accurate if
 h is too large
- Alternatively: Not very accurate if the change in y, relative to the change in t
 (i.e. h) is too large

Euler method: another example

Example: Euler's method on test equation: $\dot{x} = -100x$.

Numerically stable for h < 0.02 (but inaccurate long before)

Euler method: another example

In phase space

Euler method: code

5

10 11

12

13

14

15 16 17

18

19 20 21

22

23 24

25

26

```
function Y = ode1(odefun, tspan, y0, varargin)
□%ODE1 Solve differential equations with a non-adaptive method of order 1.
     Y = ODE1(ODEFUN, TSPAN, Y0) with TSPAN = [T1, T2, T3, ... TN] integrates
     the system of differential equations y' = f(t,y) by stepping from T0 to
     T1 to TN. Function ODEFUN(T,Y) must return f(t,y) in a column vector.
     The vector Y0 is the initial conditions at T0. Each row in the solution
     array Y corresponds to a time specified in TSPAN.
     Y = ODE1(ODEFUN, TSPAN, Y0, P1, P2...) passes the additional parameters
     P1, P2... to the derivative function as ODEFUN(T, Y, P1, P2...).
     This is a non-adaptive solver. The step sequence is determined by TSPAN.
     The solver implements the forward Euler method of order 1.
- %
 h = diff(tspan); % time step
 neg = length(y0); % number of equations
 N = length(tspan); % number of time steps
 Y = zeros(neg,N); % pre-allocate neg X time matrix
 Y(:,1) = y0; % set first to the initial conditions
for i = 1:N-1 % for each time step...
   Y(:,i+1) = Y(:,i) + h(i)*feval(odefun,tspan(i),Y(:,i),varargin{:});
- end
└Y = Y.':
```

- Known as a fixed step solver since h is a constant (in these examples always h=1)
- Easy to implement
- Predictable runtimes (scales linearly with number of time steps)
- Easily adapted to incorporate delays e.g. where $dydt=f(y,t-\tau)$
- Easily adapted to incorprate noise e.g. dydt=f(y,t)+w
- Can be slow and inaccurate compared to other solvers...

- Uses information from two points
 - Change in y at y(t)
 - Change in y at predicted $y(t+\Delta t)$

$$-dydt = y(t) + h/2 (f(y,t) + f(t+\Delta t,y+h f(y,t)))$$

- Uses information from two points
 - Change in y at y(t)
 - Change in y at predicted $y(\Delta t)$

$$-dydt = y(t) + h/2 (f(y,t)) + f(t+\Delta t,y+h f(y,t))$$

Same as Fuler's method

- Uses information from two points
 - Change in y at y(t)
 - Change in y at predicted $y(\Delta t)$

$$-dydt = y(t) + h/2 (f(y,t)) + f(t+\Delta t, y+h f(y,t))$$

- Uses information from two points
 - Change in y at y(t)
 - Change in y at predicted $y(\Delta t)$

$$-dydt = y(t) + h/2 (f(y,t) + f(t+\Delta t, y+h f(y,t)))$$

- Uses information from one point
 - Change in y at y(t)

Comparing Euler and Heun methods


```
h = diff(tspan); Heun's method code
24 -
     neq = length(y0);
25 -
26 - N = length(tspan);
    Y = zeros(neq,N);
27 -
F = zeros(neq, 2);
29
30 -
      Y(:,1) = y0;
     \triangle for i = 2:N
31 -
       ti = tspan(i-1);
32 -
       hi = h(i-1);
33 -
       yi = Y(:,i-1);
34 -
      F(:,1) = feval(odefun,ti,yi,varargin{:});
35 -
      F(:,2) = feval(odefun,ti+hi,yi+hi*F(:,1),varargin{:});
36 -
        Y(:,i) = yi + (hi/2)* (F(:,1) + F(:,2));
37 -
      end
38 -
                            y(t+∆t
```

 $y^*(t+\Delta t)$

y(t)

 $t_a + \Delta t$

- Known as a second order method
- Is more computationally expensive than Euler's method for the same step size (two function evaluations)
- Outperforms Euler's method for the same step size
- Can incorporate noise (more complicated though)
- Can incorporate delays (again, more complicated)
- Still not the best though...

Runge Kutta

- Fourth order solver
- In Heun's method the mean between the start and end points is taken
- In Runge Kutta different weights are given to different points
 ^V ★

Runge Kutta code

```
\pm for i = 2:N
56 -
         ti = tspan(i-1);
57 -
         hi = h(i-1);
58 -
         yi = Y(:,i-1);
         F(:,1) = feval(odefun,ti,yi,varargin{:});
59 -
60 -
         F(:,2) = feval(odefun,ti+0.5*hi,yi+0.5*hi*F(:,1),varargin{:});
61 -
         F(:,3) = feval(odefun,ti+0.5*hi,yi+0.5*hi*F(:,2),varargin{:});
         F(:,4) = feval(odefun,tspan(i),yi+hi*F(:,3),varargin{:});
         Y(:,i) = yi + (hi/6)*(F(:,1) + 2*F(:,2) + 2*F(:,3) + F(:,4));
63 -
64 -
       end
                              V<sub>⊿</sub>
```

Runge Kutta's method

- Known as a fourth order method
- Is more computationally expensive than Euler's method for the same step size (four function evaluations)
- Outperforms Euler's method for the same step size
- Outperforms Heun's method
- Can incorporate delays (complicated)
- Difficult & complicated to include noise (ongoing research)

Error tolerance

- Can estimate the error made at each step (in an iterative manner)
- This error is called the absolute error
- Can then calculate the relative error (absolute error/current state)
- We can tell the Matlab solvers what errors we can tolerate:
- options = odeset('RelTol',1e-3,'AbsTol',1e-6)
 ode45(@odefunc,timespan,initialConditions,options,...)

Variable step solvers

Final words of caution

- When simulating a new system it is always worth checking the results with different solvers and error tolerance settings
- Especially when expect your dynamics to change slowly, but with sudden fast bursts of activity
- Numerical solutions are ALWAYS ONLY AN APPROXIMATION