Recap



Terminology recap

Variable or state

Differential equation

Initial condition

Trajectory

Parameter

Steady state

Transient behaviour

Perturbation

Ordinary differential equations (ODE)
3 dimensional ODE



Terminology recap

Phase space/state space
Vectorfield

Fixed point (stable/unstable, focus/node)

Nullc
Sadd
Bista

ine
es, separatrix

oility



Dynamical Systems

Yujiang.wang@ncl.ac.uk
Lecture 3 of 5



Overview

 How to solve differential equation systems



Numerically solving differential
equations



Numerically solving differential
equations

e Why?
— Very rare that we can analytically solve equations
— Implementation speed
— Convenience
* Why not?
— Sometimes long simulation times
— Inaccuracies
— Variations between different solvers



Numerically solving differential
equations: methods

e Euler
* Heun
* Runge-kutta



Euler method

Solves in a fixed step (h=1) iterative manner
Example equation: dydt={(t,y)
Lets say initial condition, y, = / and f{t,y)=y

If we start with y=0 at fime(1)=0, how much
does y change between =0 and =47



Euler method

Solves in a fixed step (h=1)

Example equation: dydt=f(y)

iterative manner

Lets say initial condition, y, = 1 and f{y)=y

)

U1 :hf:1+1-1:2.

y2 =y1 +hf(y) =2+
yzs = Yo+ hf(y2) =4+ 1

ys = ys+hf(ys) =8+ 1-

.2=4,
.4=8,
8 = 16.



Euler method

* Not very accurate if
h is too large

60

-8-Euler
S0r  |=e=Exact

401




Euler method

60

* Not very accurate if
h is too large

-8-Euler
S0  |=-e=Exact

401

e Alternatively: Not
very accurate if the ~
change in y, relative
to the change int
(i.e. h) is too large 0 ‘ 2 3 4

3071

20

101




Euler method

e S ———

v e
o e




Euler method: another example

Example: Euler's method on test equation: £ = —100z.
h = 0.002 h = 0.012 3 h = 0.022
of b 0 [ — N /
o /

Numerically stable for A < 0.02 (but inaccurate long before)



Euler method: another example

* |n phase space

numerical solution
t




OLoo~NOULE WN =

Euler method: code

function Y = odel(odefun,tspan,y®,varargin)

%
%
%
% The vector YO 1is
%
%
%
%
%
%
- %
h = diff(tspan); %
neq = length(y@); %
N = length(tspan); %
Y = zeros(neq,N); %
Y(:,1) = y0; %
Cfor 1 :N-1 %
-end
Y =Y.';

-1%0DE1 Solve differential equations with a non-adaptive method of order 1.
Y = ODE1(ODEFUN,TSPAN,Y®) with TSPAN = [T1, T2, T3, ... TN] integrates
the system of differential equations y' = f(t,y) by stepping from T@ to
Tl to TN. Function ODEFUN(T,Y) must return f(t,y) in a column vector.

the initial conditions at T@. Each row in the solution

array Y corresponds to a time specified in TSPAN.

Y = ODE1(ODEFUN,TSPAN,Y®,P1,P2...) passes the additional parameters
P1,P2... to the derivative function as ODEFUN(T,Y,P1,P2...).

This is a non-adaptive solver. The step sequence is determined by TSPAN.
The solver implements the forward Euler method of order 1.

time step

number of equations
number of time steps
pre-allocate neq X time matrix

set first to the initial conditions
for each time step...

=1
Y(:,i+1) = Y(:,1i) + h(i)xfeval(odefun,tspan(i),Y(:,1),varargin{:});



Euler method

Known as a fixed step solver since 4 is a constant (in
these examples always h=1)

Easy to implement

Predictable runtimes (scales linearly with number of
time steps)

Easily adapted to incorporate delays e.g. where
dydt=f(y,t-7)
Easily adapted to incorprate noise e.g. dydt=f(y,t)+w

Can be slow and inaccurate compared to other
solvers...



Heun’s method

* Uses information from two points
— Change in y at y(t)
— Change in y at predicted y(t+At)
—dydt= y(t) + h/2 (f(y,t) + flt+At,y+h f(y,1)))

Y 4

y(t+At)

y*(t+41)

y(t)




Heun’s method

* Uses information from two points

— Change in y at y(t)

— Change in y at predicted y(At)

— dydt=

y(t) + hi2 (fiyt) + flt+Aty+hfiy.1))

Y 4

y(t+At)

y*(t+41)

y(t)

t, t +At ¢



Heun’s method

* Uses information from two points

—>» Same as Euler’s method

— Change iny at y(t) —
— Change in y at predicted y(At)
—dydi= y(1) + h/2 (f(y,t) + flt+At,y+h f(y,1)))

Y 4

y(t+At)

y*(t+41)

y(t)




Heun’s method

* Uses information from two points

— Change in y at y(t)

— Change in y at predicted y(At)

— dydt=

y(t) + hi2 (fiyt) + flt+Aty+hfiy.1))

Y 4

y(t+At)

y*(t+41)

y(t)

t, t +At ¢



Euler’s method

e Uses information from one point
— Change in y at y(t)

y(t+At) -

y*(t+41)
y(t)

t t +At



Comparing Euler and Heun methods

Y 4
Y
y(t+At) .
yltan)f- ‘o
ye(tsan)| - + y*(t+At) -
y(t) ; vit)
t t +At t t t +At



24 -
L=
26 -
7ayi =
)=
29

L=
Sill=
S a=
S|=
34 -
SEi=
lei|=
i =
Sini|=

: . V4
; drfieens Heun’s method code
length(tspan);
zeros(neq,N);

h
n
N
Y
F = zeros(neq,2);

nmunn<e

Y(:,1) = y0;

for 1 = 2:N
ti = tspan(i-1);
hi = h(i-1);
yi = Y(:,1i-1);

F(:,1) = feval(odefun,ti,yi,varargin{:});
F(:,2) = feval(odefun,ti+hi,yi+hixF(:,1),varargin{:})
Y(:,1) = yi + (hi/2)* (F(:,1) + F(:,2));

end

Y 4

y(t+At)

y*(t+At)

y(t)

t, t +At

v



Heun’s method

Known as a second order method

Is more computationally expensive than Euler’s
method for the same step size (two function
evaluations)

Outperforms Euler’s method for the same step
size

Can incorporate noise (more complicated though)
Can incorporate delays (again, more complicated)

Still not the best though...



Runge Kutta

* Fourth order solver

 In Heun’s method the mean between the start
and end points is taken

* |[n Runge Kutta different weights are given to
different points V4




Runge Kutta code

Sil= for 1 = 2:N

56 - ti = tspan(i-1);

57 - hi = h(i-1);

58 - yi = Y(:,i-1);

59 - F(:,1) = feval(odefun,ti,yi,varargin{:});

60 - F(:,2) = feval(odefun,ti+@.5%hi,yi+0.5%xhixF(:,1),varargin{:});
61 - F(:,3) = feval(odefun,ti+0.5%hi,yi+0.5xhixF(:,2),varargin{:});
62 - F(:,4) = feval(odefun,tspan(i),yi+hixF(:,3),varargin{:});

63 - Y(:,1) = yi + (hi/6)*(F(:,1) + 2%F(:,2) + 2xF(:,3) + F(:,4));
64 - end

~ V¥

n+1



Runge Kutta’s method

Known as a fourth order method

Is more computationally expensive than Euler’s
method for the same step size (four function
evaluations)

Outperforms Euler’s method for the same step
size

Outperforms Heun’s method

Can incorporate delays (complicated)

Difficult & complicated to include noise (ongoing
research)



Error tolerance

Can estimate the error made at each step (in
an iterative manner)

This error is called the absolute error

Can then calculate the relative error
(absolute error/current state)

We can tell the Matlab solvers what errors we

can tolerate:

options = odeset(’RelTol',1e-3,AbsTol',1e-6)
ode45(@odefunc,timespan,initialConditions,options,...)



Variable step solvers

14

Time Seres Plot: StepResponse

12F

o
Q0
T

o
(=}
T

StepResponse

0.4}

0.2p

o8

¥
0.5

1

15
Time (seconds)




Final words of caution

* When simulating a new system it is always
worth checking the results with different
solvers and error tolerance settings

* Especially when expect your dynamics to
change slowly, but with sudden fast bursts of
activity

* Numerical solutions are ALWAYS ONLY AN
APPROXIMATION



