Dynamical Systems

Yujiang.wang@ncl.ac.uk Lecture 2 of 5

Terminology recap

- Variable or state
- Differential equation
- Initial condition
- Trajectory
- Parameter
- Steady state
- Transient behaviour
- Perturbation
- Ordinary differential equations (ODE)
- 3 dimensional ODE

Population dynamics

 $dR/dt = k^*R$

R: Rabbit population k: ?

Population dynamics

 $dR/dt = k^*R^*(1-a)$

a=0? a=1? 0<a<1? a>1?

Neural population model

E -> fractional firing of excitatory neural populationI -> fractional firing of inhibitory neural population

$$dE/dt = -E + S(a^*E - b^*I + P)$$

 $dI/dt = -I + S(c^*E - d^*I + Q)$

Also known as Wilson-Cowan equations

a,b,c,d: connectivity weights

P,Q: baseline input to the populations

S: sigmoid function

Overview

- What are dynamical systems?
- How to interpret a differential equation
- How to analyse differential equation systems
- How to solve differential equation systems
- Stability analysis, multistability
- Oscillatory solutions
- Parameter variations, bifurcations
- Choice of cool stuff: Chaos, turbulence, spatiotemporal systems, slow-fast systems, transients, and more.

Time series 2

An alternative view: Phase space

Phase space with more initial conditions

Phase space with vector field

Vectorfield 101

dX/dt=2*Y-X dY/dt=-Y+1

Draw phase space and vectorfield between X=[0:3], Y=[0:3]

Example of vector field and trajectory

https://www.windytv.com/?54.988,-1.619,5

Neural population model

E -> fractional firing of excitatory neural populationI -> fractional firing of inhibitory neural population

$$dE/dt = -E + S(a^*E - b^*I + P)$$

 $dI/dt = -I + S(c^*E - d^*I + Q)$

Also known as Wilson-Cowan equations

a,b,c,d: connectivity weights

P,Q: baseline input to the populations

S: sigmoid function

Phase space with vector field

Phase space with vector field and nullcline

Increase self excitation (parameter a)

Illustrating fixed point stability

Node vs. Focus

Saddle and separatrix

Basin of attraction

Terminology recap

- Phase space/state space
- Vectorfield
- Fixed point (stable/unstable, focus/node)
- Nullcline
- Saddles, separatrix
- Bistability

Solving for a steady state analytically (for yesterday's exercises)

 $dx/dt = k^*x + c$ dx/dt = 0

$$k^* x_{ss} + c = 0$$
$$k^* x_{ss} = -c$$
$$x_{ss} = -c/k$$

Plotting phase space, vectorfields, nullclines

Google: pplane matlab

http://math.rice.edu/~dfield/#8.0

Summary

Flow: The rate of change of the system at every state. On a phase portrait, arrows represent the flow. They have a length and direction proportional to the size and direction of change.

Steady states: States of the system for which the rate of change is zero. A steady state is **stable** if, upon perturbation, a trajectory will reconverge to it. Otherwise, the steady state is **unstable**.

Trajectory: Curve that describes the change of state variables over time.

Basin of attraction: Region around a stable state from which all trajectories converge towards it.

Separatrix: Curve that separates basins of attraction.

Unstable manifold: Trajectory joining a saddle to an attractor.

A phase portrait represents a dynamical system in a graphical way. The approach has the advantage that trajectories can be understood in terms of their drivers, i.e. the distinctive features of a system.

Quiz

- Where do nullclines come from?
- What do nullclines indicate in phase space?
- What is the intersection of nullclines?

- Where does the vector field come from?
- What is its relationship to nullclines?
- Why is the vector field useful?

Quiz

- What effects can parameters have on the vector field and nullclines?
- What is a fixed point?
- Trick question: Does the fixed point depend on initial conditions?
- Trick question: Why is the vectorfield on a grid system?
- Why do trajectories never intersect?