Terminology recap

Variable or state

Differential equation

Initial condition

Trajectory

Parameter

Steady state/fixed point/equilibrium



Terminology recap

Phase space/state space
Vectorfield

Fixed point (stable/unstable, focus/node)

Nullc
Sadd
Bista
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es, separatrix

oility



Terminology recap

Order of ODE solver

Step size

Variable/adaptable stepsize solvers
Eulers method

Heun’s method

Runge Kutta method
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Overview

e Oscillatory solutions



Back to: Neural population model

E -> fractional firing of excitatory neural population
| -> fractional firing of inhibitory neural population

dE/dt =-E + S(a*E — b*| + P)
di/dt =-1+S(c*E—-d*I + Q)

a,b,c,d: connectivity weights
P,Q: baseline input to the populations
S: sigmoid function
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Time series of an example trajectory
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A note on Limit cycles

* Not as neat to deal with as fixed points
(no dx/dt=0)
* In general no analytic expression possible

e Difficult to obtain the stability (yes, unstable,
stable and saddle limit cycles all exist!)



Overview

 Parameter variations, bifurcations



How does the phase space change
with parameters? Changing Q
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Critical state transitions in nature

Small change in parameter(s) that lead to a
sudden change in the qualitative behaviour of
a system

Epidemics
Trends in society
Gas -> liquid -> solid

Superconductivity



Types of state transitions in dynamical

systems (bifurcation theory)

Hopf
Saddle-Node
Homoclinic



Andronov-Hopf bifurcation

e Supercritical Hopf: a stable focus becomes
unstable at the bifurcation point, and a stable
limit cycle arises.

e Subcritical Hopf: an unstable focus becomes
stable at the bifurcation point, and an
unstable limit cycle arises.

* Eigenvalues cross the imaginary axis at
bifurcation point.



Supercritical Hopf Yo

Stable focus ->
Stable limit cycle

<0
Subcritical Hopf Yo

Unstable focus ->
Unstable limit cycle
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Changing Q: two Hopf bifurcations!
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Saddle-Node bifurcation

* Also called fold, or limit point bifurcation

* Two fixed points collide and disappear (or two
fixed point are born)

* Can often be understood well using nullclines in
phase space




Changing parameter a
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Homoclinic bifurcation

* Collision of a limit cycle with a saddle point
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For small parameter values, As the bifurcation parameter When the bifurcation
there is a saddle point at the increases, the limit cycle grows parameter increases
origin and a limit cycle in the until it exactly intersects the further, the limit cycle
first quadrant. saddle point, yielding an orbit disappears completely.

of infinite duration.


https://en.wikipedia.org/wiki/Saddle_point
https://en.wikipedia.org/wiki/Limit_cycle

Changing P
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Why are bifurcations important?

Modelling transition:
Seizure onset
Epidemics

Cell cycle transitions



Focal seizure onset




Focal seizure onset
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FIGURE 1
Cumulative reported cases and deaths of Ebola virus disease in Nigeria, July-September 2014
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Atotal of 19 laboratory-confirmed cases, one probable case and eight deaths among the cases have been reported as of 1 October 2014. The
index case entered Nigeria on 20 July 2014 and the onset of outbreak is taken from that date.

Source: [1,2,5].



Diagram of Irreversible and Bistable Switch (in mitosis)
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Domingo-Sananes et al. Phil Trans R Soc B, 2011. DOI: 10.1098/rstb.2011.0087



How do we analyse bifurcations?

1. By simulation
2. By continuation



By simulation: parameter scan

Vary a parameter slowly and observe long-term
behaviour (in phase space, or as a time series)

Vary parameter slowly and store information
(min/max of an oscillation) about the long term
behaviour at each parameter & plot it

Forward & backward scan to detect bistabilities

Advantage: Simple and intuitive to understand.
Quick way to check systemes.

Drawback: Only stable dynamics can be shown.
(Saddles are invisible.)



By numerical continuation

Uses the mathematical conditions (e.g. eigenvalues) to
find the bifurcation points in parameter space

Available software packages: XPPAuto, MATCONT
(matlab package), ...

Advantage: also shows unstable structures

Drawback: software sometimes fickle and difficult to
use. Can be computationally expensive, especially for
large systemes.

http://wwwf.imperial.ac.uk/~jswlamb/LDSG/grad0506/
files/intro.pdf



Terminology recap

Limit cycle

Hopf bifurcation
Saddle-node bifurcation
Homoclinic bifurcation
Continuation

Comment: Scholarpedia is your best friend in
bifurcation theory



