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Genome-wide meta-analysis of brain volume
identifies genomic loci and genes shared
with intelligence
Philip R. Jansen 1,2,4, Mats Nagel 1,4, Kyoko Watanabe 1, Yongbin Wei1, Jeanne E. Savage 1,

Christiaan A. de Leeuw 1, Martijn P. van den Heuvel 1,3, Sophie van der Sluis 1,3,5 &

Danielle Posthuma1,3,5✉

The phenotypic correlation between human intelligence and brain volume (BV) is con-

siderable (r≈ 0.40), and has been shown to be due to shared genetic factors. To further

examine specific genetic factors driving this correlation, we present genomic analyses of the

genetic overlap between intelligence and BV using genome-wide association study (GWAS)

results. First, we conduct a large BV GWAS meta-analysis (N= 47,316 individuals), followed

by functional annotation and gene-mapping. We identify 18 genomic loci (14 not previously

associated), implicating 343 genes (270 not previously associated) and 18 biological path-

ways for BV. Second, we use an existing GWAS for intelligence (N= 269,867 individuals),

and estimate the genetic correlation (rg) between BV and intelligence to be 0.24. We show

that the rg is partly attributable to physical overlap of GWAS hits in 5 genomic loci. We

identify 92 shared genes between BV and intelligence, which are mainly involved in signaling

pathways regulating cell growth. Out of these 92, we prioritize 32 that are most likely to have

functional impact. These results provide information on the genetics of BV and provide

biological insight into BV’s shared genetic etiology with intelligence.
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The relation between brain volume (BV) and cognitive
ability has long been a fundamental question to cognitive
sciences1–4. Before the advent of magnetic resonance

imaging (MRI), BV was typically determined from autopsy
records5, or inferred by external head size measures. A literature
meta-analysis conducted by Vernon et al.6 estimated the corre-
lation between external head measures and intelligence to be
around 0.19. Five years later, a meta-analysis of 24 studies using
MRI-based measures of BV (with the subtle title; “Big brains are
better”) found a substantially higher correlation of 0.33 with
intelligence7. Recently, an exhaustive meta-analysis8, including
88 studies comprising 148 samples, was conducted, aiming to
readdress the much-debated relation between BV and intelli-
gence. This study found that BV and intelligence were, indeed,
robustly correlated, albeit lower (r= 0.24) than what was repor-
ted in the literature. The difference may in part be explained by
publication bias, with strong, positive correlations more often
being reported than small, non-significant ones. Recently, these
findings were supported by another large-scale study reporting a
correlation of r= 0.19 between BV and fluid intelligence9

(referring to problem-solving and logical skills that do not depend
on previously acquired knowledge). Interestingly, previous studies
did not find evidence for sex differences in the relation between
BV and intelligence8.

The conservative correlation of ~0.20, implies an explained
variance of just 4%. This is low and therefore BV is not a good
predictor of intelligence, and vice versa, intelligence is not a
good predictor of BV. However, knowing that this correlation is
at least partly due to shared genetic factors10 suggests that
knowledge of which specific genetic factors are involved in both
traits may provide insight into the observed covariance between
BV and intelligence. With the availability of larger genotype
data and genome-wide association studies (GWAS) that iden-
tify increasing numbers of genes related to BV11–13 and intel-
ligence14–16, analysis of the shared genes and pathways has
become feasible.

In the current study, we utilize large-scale genetic data and
advanced statistical genetics tools, to examine the genetic factors
that underlie the observed correlation between BV and intelli-
gence. We conduct a GWAS of BV in the UK Biobank (UKB)
sample, and meta-analyze the results with two additional cohorts
for which data on intracranial volume (ICV) and head cir-
cumference (HC), a proxy measure for BV, is available in the
public domain. Using extensive follow-up analyses and GWAS
summary statistics of intelligence we aim to zoom in on the
genetic factors overlapping between BV and intelligence.

We identify 92 genes affecting both BV and intelligence, which
are mainly involved in signaling pathways regulating cell growth.
A series of follow-up analyses prioritizes 32 out of these 92 genes
that are most likely to have functional impact based on the
properties of these genes.

Results
GWAS meta-analysis of BV. To identify genetic variants asso-
ciated with BV, we first performed a GWAS (Supplementary
Fig. 1) using data of 17,062 participants from the UKB17, with BV
estimated from structural (T1-weighted) MRI by summing total
gray and white matter volume, and ventricular cerebrospinal fluid
volume (Supplementary Fig. 2). GWAS analyses in UKB were
corrected for the Townsend deprivation index (TDI)18, a measure
that correlates with socioeconomic and health-related factors19,20,
as well as for age, sex, genotype array, assessment center, standing
height, and the first 10 genetic principal components (PCs).
Within the UKB data, we identified 3,610 genome-wide sig-
nificant (GWS; P < 5 × 10−8) variants, tagging 9 independent

genomic loci. The single nucleotide polymorphism (SNP)-based
heritability (h2SNP) of BV, estimated through linkage dis-
equilibrium score regression (LDSC21; Methods), was 35.3%
(SE= 4.1%). The LDSC intercept of 1.02 is close to 1, suggesting
that the observed inflation (λGC= 1.118) in genetic signal is
mostly due to polygenicity rather than population stratification22

(see Supplementary Note 1). The UKB GWAS results were then
meta-analyzed with GWAS results from two previously published
studies: one on ICV from the ENIGMA consortium13 (N=
11,373), the other on HC, a proven proxy of BV23–25 (also see
Supplementary Note 2), from a recent GWAS meta-analysis11 of
adults and children (N= 18,881). This led to a total sample size of
47,316 unrelated Europeans (Supplementary Fig. 3; Supplemen-
tary Table 1). LDSC showed high concordance of SNP associa-
tions between the three samples (UKB and ENIGMA: rg= 1.25,
SE= 0.20; UKB and HC-GWAS: rg= 0.75, SE= 0.09; ENIGMA
& HC-GWAS: rg= 0.94, SE= 0.20; Supplementary Data 1), jus-
tifying subsequent meta-analysis (we note that the rg outside [−1,
1] is likely due to the unbiased rg estimation by LDSC, the large
standard error of the estimate and the high genetic correlations
between these meta-analyzed cohorts). Sample-size weighted
fixed-effects meta-analysis was carried out using METAL26

(Methods) resulting in 24 linkage disequilibrium (LD) indepen-
dent lead variants (r2 < 0.1), residing in 18 genomic loci
(Fig. 1a–b; Supplementary Data 2; Supplementary Figure 4;
Supplementary Note 3), representing 4,155 GWS variants (of
which 371 were indels, Supplementary Data 3) associated with
BV. Of these 18 loci, 14 were not identified in a recent GWAS
study of ICV12 (2 loci reported in this earlier study were not GWS
in the current meta-analysis). To see if our results were driven by
only one of the three samples or were supported by all three, we
examined the direction of effect of all GWS variants across the
three individual cohorts. As expected, we found high con-
cordance: all variants that were GWS in the meta-analysis, and
that were present in all three cohorts, had the same direction of
effect. Of the 4,155 variants that were GWS in the BV meta-
analysis, just 2.4% was GWS in at least two of the individual
cohorts, however, 75.0% had a P-value < 0.05 in at least two
cohorts (and 21.2% in all three cohorts). The h2SNP of BV esti-
mated by LDSC from the meta-analytic results was 21.4% (SE=
1.8%), and the LDSC intercept approximated 1 (1.025, SE=
0.009), suggesting that the inflation in test statistics (λGC= 1.18)
in the meta-analysis was also largely due to polygenicity22.
Functional annotation of 4,683 ‘candidate’ variants (i.e., variants
in the loci with a GWAS P-value of P < 10−5 and LD r2 > 0.6 with
one of the independent significant variants; Methods; Supple-
mentary Note 4) carried out in FUMA27 showed that these var-
iants were most abundant in intronic (n= 2,444, 52,1%) or
intergenic regions (n= 751, 16.0%), and 27 (0.6%) variants were
exonic nonsynonymous SNPs (ExNS) altering protein structures
of 13 genes (Supplementary Figure 5; Supplementary Data 4, 5).
One gene, SPPL2C, contained 8 ExNS (all in exon 1, and in the
same inversion region). SPPL2C codes for the signal peptide
peptidase-like 2C, which plays a role in the degradation of sig-
naling peptides in the brain28.

To test whether specific functional categories of variants
contribute disproportionally to the heritability of BV, we used
LDSC to partition the genetic signal over different variant
annotations29 (Methods). We observed significant heritability
enrichment in eight variant categories (Fig. 1c; Supplementary
Table 2), with the strongest enrichment of variants in (evolu-
tionary) conserved regions, (enrichment= 15.1, SE= 2.7, P=
1.19 × 10−6, suggesting a 15-fold enrichment in h2 conveyed by
variants in these regions compared to the proportion of variants
in these regions), transcription start sites (TSS; enrichment=11.1,
SE= 3.1, P= 1.2 × 10−3), and H3K9ac peaks (i.e., specific histone
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modification that is correlated with active promoters; enrichment
= 10.3, SE= 3.0, P= 1.24 × 10−3).

BV gene analyses. To gain insight into which genes may be
involved in BV, we mapped the 4683 candidate variants impli-
cated in the BV meta-analysis to genes, using positional mapping,

eQTL mapping, and chromatin interaction mapping as imple-
mented in FUMA27, and through gene-based association tests as
implemented in MAGMA30 (Methods, Supplementary Fig. 6;
Supplementary Note 5). In total, 343 unique genes were impli-
cated by at least one of these methods (of these, 321 genes were
mapped based on the 18 identified risk loci). Specifically, the 18
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risk loci were mapped to 119 genes based on position, 207 genes
by eQTL association, 192 genes through chromatin-chromatin
interactions (Fig. 2a; Supplementary Data 6), and gene-based
association testing identified 69 genes (Fig. 2b; Supplementary
Data 7). Of the 343 genes, 73 genes were also found in previous
studies (38 were not), while 270 were not previously implicated
(Supplementary Data 8). Overall, 16 genes were implicated by all
four methods (FRZB, FOXO3, WBP1L, PRR13, MAP3K12,
RAB5B, SUOX, RPS26, ERBB3, PITPNM2, C12orf65, INA,
HMGA2, PLEKHM1, MAPT, and KANSL1) of which the first 11
were not identified in previous studies of BV at the time of
analysis11,12,31–33.

Variation in BV can be seen as a continuum, with abnormally
small or large brains as the extremes. Since monogenic Mendelian
disorders are often characterized by abnormal brain development,
which frequently results in deviations in BV, we performed look-up
of the 343 genes implicated in the BV meta-analysis in the Online
Mendelian Inheritance in Man database34 (OMIM). We identified
143 monogenic disorders caused by high-penetrance mutations in
89 of the 343 BV-implicated genes (25.9% vs. 16.4% (59 genes) that
is expected based on the number of genes reported in OMIM;
Fisher exact test P= 2.33 × 10−5) many of which are commonly
associated with abnormal brain development (including micro-
cephalia (CDK6), macrocephalia (PTEN) and megalencephaly
(AKT3)), and abnormal growth (tetra-amelia syndrome (WNT3))
(Supplementary Data 9).

To identify functional pathways related to BV, we performed
gene-set and gene-expression analysis in MAGMA30 (Methods).
Of the 12,191 tested gene sets (including canonical pathways,

gene ontology (GO) gene sets, and gene-expression in tissue/cell
types), 18 were significantly associated after Bonferroni correction
(Gene-set PBONF= 3.90 × 10−6 (0.05/(12,191 gene sets+ 53 tissue
types+ 565 cell types)); Fig. 2c; Supplementary Data 10–11;
Supplementary Note 6). Among these significant gene sets were
several cell-signaling pathways, including the ERBB3 pathway, the
PI3K/AKT signaling in cancer pathway and a pathway related to
GRB7 events in ERBB2 signaling. Other pathways were related to
(regulation of) developmental processes such as mesenchyme and
muscle organ development, or to growth. That is, key cell-
signaling pathways were implicated that are involved in normal
brain development35 and involved in several brain developmental
abnormalities36,37. Pairwise conditional gene set analysis allows
one to disentangle overlapping associations of gene sets (see
Methods). Conditional gene-set analyses can be used to examine
whether a gene set is independently associated with a trait, rather
than being associated because it is nested within a larger
associated gene set38. These analyses indicated that nine gene
sets constitute largely independent associations, defined as
remaining significant in the majority of the conditional analyses
(Supplementary Figs. 7–9, Supplementary Data 12). Conversely,
conditional analyses suggest that a number of signaling pathways
(BIOCARTA: ERBB3 pathway, BIOCARTA: PTEN pathway)
represent a shared underlying signal, since conditional P-values
were substantially higher than the unconditional P-values.

Next, we aimed to identify tissue categories and neuronal cell
types that are enriched for gene signal of BV, by linking gene P-
values to gene-expression in 53 tissue types39 and 565 brain cell
types40 (Methods). None of the associations of tissue or cell types
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passed our stringent multiple testing correction (i.e. correcting for
all tested gene sets, tissues, and cell types, thus 0.05/12,809). The
strongest evidence of association was observed for three cell types:
TNR-BMP4 polydendrocytes in the subthalamic nucleus, (P=
4.67 × 10−3), layer 5a cortical (P= 8.55 × 10−3), and hippocam-
pal endothelial stalk FLT1-LCN2 neurons (P= 0.01) (Supple-
mentary Data 10). Polydendrocytes are thought to be precursor
cells of oligodendrocytes41, a cell-type involved in supporting
neuronal health and myelinization of the brain42. The endothelial
neurons in the hippocampus support formation of the
blood–brain barrier, and are involved in the regulation of
neurogenesis43.

Genetic correlations between BV and other traits. Earlier stu-
dies have shown substantial overlap between BV and behavioral
traits, reporting phenotypic correlations between BV and, e.g., aut-
ism44, and genetic correlations between BV and intelligence45–48

and schizophrenia49. We used LDSC to estimate the overlap in
genetic signal between BV and 25 brain-related and neuropsychia-
tric traits for which published genome-wide summary statistics
based on large samples were available (Methods). Significant genetic
correlations (P < 0.002; 0.05/25) were observed between BV and 7
traits, amongst which were positive genetic correlations with edu-
cational attainment (rg= 0.22, SE= 0.03, P= 3.58 × 10−17; Fig. 1d;
Supplementary Table 3), intelligence (rg= 0.21, SE= 0.03, P=
9.87 × 10−12), BMI (rg= 0.17, SE= 0.03, P= 1.22 × 10−9) and birth
weight (rg= 0.26, SE= 0.07, P= 1.13 × 10−4), and negative genetic
correlations with ADHD (rg= −0.17, SE= 0.05, P= 3.56 × 10−4),
neuroticism (rg=−0.10, SE= 0.03, P= 4.65 × 10−4), and insomnia
(rg= −0.12, SE= 0.03, P= 5.76 × 10−6), confirming previously
reported overlap12,50,51

Genetic overlap with intelligence. The development of human
intelligence has coincided with a strong increase in total size of
the brain52. Indeed, epidemiological studies have shown overlap
in genetic factors between BV and intelligence46,53. To further
explore the nature of the genetic overlap between intelligence and
BV, we used GWAS summary statistics of a large recent meta-
analysis of intelligence from Savage et al.53, based on data from 14
cohorts (N= 269,867) using different types of intelligence mea-
sures. Except for one, all of these cohorts used intelligence mea-
sures that adhere to the idea of a single latent trait g (Spearman’s
g) that underlies multiple domains of cognitive ability. Extensive
previous research has shown that a) scores on different, validated
tests of cognitive ability correlate highly, and b) all tests index the
same underlying (statistical) construct, i.e., g10,54.

Our analyses confirmed the previously established genetic
overlap between BV and intelligence: the estimated rg between BV
and intelligence was 0.24 (Supplementary Data 2; Supplementary
Table 3), in line with prior evidence of shared genetic factors
between intelligence and gray and white matter volume obtained
from twin studies46. To gain insight into the specific genetic
factors driving this genetic correlation, we explored the overlap in
variants, loci, and genes associated with both traits. We first
determined whether strongly associated variants show the same
direction of effect in both traits, by performing a look-up of the
lead variant of BV in the intelligence GWAS, and vice versa. We
observed a complete sign concordance of the 24 BV lead variants
in intelligence (sign concordance= 100%, P= 1.19 × 10−7,
Fig. 3a), and weaker but still considerable sign concordance of
the 243 lead variants of intelligence in BV (sign concordance=
62.1%, P= 1.39 × 10−4, Fig. 3b). Similarly, we found that the
majority of genes that reached gene-wide significance in the
MAGMA gene-based test of BV (69) also showed low P-values in
intelligence (507), and vice versa (Supplementary Fig. 10).

To explore possible causal relations between BV and
intelligence, we carried out GWAS summary statistics-based
Mendelian Randomization (MR) analyses, using the General-
ized Summary-data-based MR package55 (GSMR; Methods),
essentially using independent lead variants as instrumental
variables (LD: r2 < 0.1). GSMR analyses demonstrated a
directional effect of BV on intelligence (bxy= 0.154, SE=
0.015, P= 1.88 × 10−23; Fig. 3c) and a less strong yet still highly
significant directional effect of intelligence on BV (bxy= 0.139,
SE= 0.026, P= 7.34 × 10−8; Fig. 3d), suggesting a bidirectional
association between these phenotypes, in line with the previous
reports53. We do note, however, that GSMR relies on several
strong assumptions, such as the absence of a third, mediating,
factor, and no horizontal or vertical pleiotropy56, which may
not always hold. The current results should be interpreted
conditional on these assumptions.

To investigate whether specific variants or genes could be
identified that drive the genetic overlap between intelligence and
BV, we performed several cross-trait analyses of variants and
genes significantly implicated in both traits. We observed physical
overlap in 5 out of the 18 genomic loci for BV, and overlap in
genes implicated by FUMA (ngenes= 81) and MAGMA (ngenes=
24), resulting in 92 unique overlapping genes (Fig. 3e–f;
Supplementary Data 13). Conversely, of the 343 genes that were
significant for BV, 251 genes were not associated to intelligence
(Fig. 3e). Lookup of gene functions of the 92 overlapping genes in
the online GeneCards57 repository showed strong involvement of
these genes in a wide variety of cellular processes and key factors
in cell division. When comparing the probability of being loss-of-
function (LoF) intolerant (pLI score >0.9) between overlapping
genes (n= 92) and genes observed for only one of these traits
(n= 1926), we observe a slightly higher fraction of genes being
LoF intolerant in the genes that play a role in both traits (24.4%
(shared) vs. 21.2% (intelligence-only), 18.0% (BV-only), and
17.7% (all genes), Fig. 3g). The mutation intolerance of these
overlapping genes is further demonstrated by a slightly higher
fraction of genes in this category that are associated with
monogenic disease (18.3%) in the OMIM database compared to
BV-only (16.8%) and intelligence-only (17.4%) genes (all genes:
16.4%). Furthermore, we observed a higher proportion of genes
that cause monogenic developmental disorders (overlap: 16.0%,
BV-only: 10.0%, intelligence-only: 13.7%, all genes: 12.3%) in the
DECIPHER database of developmental disorders58 (Fig. 3g).

Previous studies have sought to narrow down the link between
intelligence and BV to specific subcortical regions, such as the
caudate nuclei59 or the thalamus60. If specific brain regions are
related to intelligence, one might expect genes associated with
intelligence (or BV) to be differentially expressed across regions.
Using data obtained from the Allen Human Brain Atlas
(AHBA)61, we examined whether cortical gene expression profiles
of the 92 genes that overlap between BV and intelligence differed
from the gene expression profiles of all the 1900 genes associated
to BV and/or intelligence (Fig. 3h). Specifically, using permuta-
tion analyses we compared the expression of these 92 overlapping
genes across 57 brain regions to that of 10,000 randomly selected,
equally large, sets of genes drawn from the 1900 genes related to
either or both of the traits. Although we observed overexpression
of the 92 overlapping genes in the anterior part of the fusiform
(two-sided permutation test N= 10,000 permutations P= 0.015)
and the parahippocampal gyrus (P= 0.005), none of the
associations survived a conservative Bonferroni correction (P=
8.77 × 10−4; 0.05/57); Supplementary Data 14). To examine
whether clusters of more homogeneously expressed genes exist
within the 92 overlapping genes, we additionally performed
clustering analysis on the correlations between the expression
profiles of genes, aiming to maximize intra-cluster cohesion,
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while at the same time maximizing differences between clusters
(see Methods). Two clusters were identified and only for cluster 2
(representing 42 of the 92 overlapping genes) one of the 57
expression profiles was significantly different from that of
random sets, suggesting overexpression in the anterior fusiform
gyrus (P= 6.0 × 10−4; Supplementary Data 14). Interaction
analyses in MAGMA (see Methods), testing whether gene
expression in specific brain regions contributed significantly to
the genetic relationship between BV and intelligence, revealed no
evidence for interaction (Supplementary Data 15). Based on these
results, we are unable to conclude that the set of overlapping
genes is predominantly expressed in any particular cortical region
compared to other brain regions.

To prioritize from the 92 overlapping genes those genes that
are more likely to have causal effects on both BV and intelligence,
we filtered the set of overlapping genes based on either one of
three conditions: (1) the gene contains an ExNS SNP, (2) the gene
is part of one of the significant gene sets for BV or intelligence,
and (3) the GWAS signal of either trait colocalizes with eQTL
signals, using COLOC62 (colocalization of GWAS and eQTL
signals is compatible with the hypothesis of a common causal

variant; Supplementary Data 13). Filtering the 92 overlapping
genes on the basis of these 3 conditions yielded a selection of 32
potentially functionally interesting genes. For example, we
prioritized two genes on chromosome 3 (out of 4 associated
genes in the same region) that may prove particularly interesting
candidates for functional follow-up aimed at characterizing the
genetic relation between BV and intelligence: both USP19 and
ARIH2 are part of a significantly associated gene set for BV, and
in addition USP19 contains an ExNS variant that was significantly
associated to intelligence.

To examine whether the gene-set associations are unique to BV
and intelligence, respectively, we conducted conditional gene-set
analyses (i.e., we conditioned the gene-based Z-scores in BV on
the gene-based Z-scores for intelligence, and vice versa).
Interestingly, these analyses indicated that the gene sets identified
for BV (18) and intelligence (9) are trait specific, since the
association remains virtually unchanged when conditioning on
the other trait (Supplementary Table 4). Fisher’s exact tests
showed that the 92 overlapping genes were not significantly
enriched in the 27 gene sets associated to BV or intelligence
(Supplementary Table 5). However, several genes related to
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intelligence were included in gene sets observed for BV, including
ERBB3 and FOXO3 (see Fig. 4), suggesting that, although no
single gene set was shared between BV and intelligence, several
genes associated with intelligence are located along important
signaling pathways implicated in BV.

Discussion
We studied the genetics of BV and report 14 loci and 270 genes
that had not been previously associated to BV. The gene-findings
converged into 18 significantly associated gene-sets related to
cellular signaling, division, and growth, mostly appearing inde-
pendent in conditional analyses.

We found a significant positive genetic correlation with intel-
ligence using previously published GWAS result53, confirming
the genetic overlap estimated from twin studies46. We then
explored whether specific genes or gene-sets drive this genetic
correlation, and identified 92 genes that are associated with both
traits. Of these 92, 32 genes were indicated as the most plausible
ones explaining the shared genetic etiology. Several of these genes
are involved in cell growth and differentiation pathways (e.g.,
FOXO3, ERBB3, DDR, and HBEGF, Fig. 4). We also tested
whether the set of 92 shared genes, had specific biological char-
acteristics that would set them apart from the genes that were
associated with either BV or intelligence. Except for an increased
intolerance to LoF mutations, we did not find any other of the
tested biological functions to be different. We note that that the
current set of genes associated with both traits, likely under-
estimates the true number of shared genes, as current sample sizes

of especially the BV GWAS may limit the number of significantly
associated genes.

The nature of the genetic overlap between intelligence BV
remains largely unresolved. The large numbers of genes (>1000)
that well-powered GWAS are now able to identify53,63,64 provide a
starting point for understanding how genetic variation contributes
to intelligence, yet it does not directly provide insight into the
genetic relation with BV. Investigating genes that are related to
both brain function (intelligence) and structure (BV), may provide
further insight into the nature of the relation between intelligence
and BV. We emphasize that in addition to shared pathways and
biological pleiotropy, some genes linked to intelligence may also
be associated to BV through gene-environment correlation with
factors that indirectly influence BV development65.

In conclusion, we explored and refined the genetic architecture
of BV, and identified and characterized a set of genes that likely
drives this association.

Methods
Samples and phenotypes. UK Biobank - Brain volume: The UKB (UKB, www.
ukbiobank.ac.uk) constitutes a large data set, combining a wide range of pheno-
types with genetic and imaging information. The UKB study received ethical
approval from the National Research Ethics Service Committee North West-
Haydock (reference 11/NW/0382), and all study procedures were in accordance
with the World Medical Association for medical research. The current study was
conducted under UKB application number 16406. Here, we used processed data of
a subset of N= 21,407 individuals who underwent a MRI procedure: data were
released in the third quarter of 2018. After filtering on quality of the imaging
results, relatedness, European ancestry and the availability of relevant covariates
(discussed in more detail below), we arrived at a final sample size of N= 17,062.
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The BV phenotype was approximated as follows: BV=white matter volume+ gray
matter volume+ cerebrospinal fluid volume (UKB field codes 25008, 25006, and
25004, respectively). The UKB obtained ethical approval from the National
Research Ethics Service Committee North West–Haydock (reference 11/NW/
0382), and all study procedures were performed in accordance with the World
Medical Association for medical research. The current study was conducted under
UKB application number 16406.

ENIGMA - ICV: We used GWAS summary statistics on ICV obtained in a
collaboration of cohorts included in the meta-analysis of ICV of the Enhancing
NeuroImaging Genetics through Meta-Analysis (ENIGMA)13 consortium. ICV
was calculated from brain MRI data collected in 50 individual cohorts (N=
11,373). Given the moderate phenotypic and relatively low, but still significant,
genetic correlation between BV and height (phenotypic r= 0.55 in UKB; rg= 0.26
between height in UKB and uncorrected ICV summary statistics from ENIGMA13)
we considered height an important covariate to include in GWAS on volumetric
brain measures. Therefore, we used mtCOJO to correct for height, by conditioning
on height using UKB-derived sumstats (this procedure is described in more detail
below). Details on the individual cohorts included in the ENIGMA meta-analysis
and genotyping, imputation and analysis procedures are described elsewhere13. All
participants were of European descent and provided informed consent. All studies
included in the ENIGMA meta-analysis were approved by their local institutional
review board or local ethics committee.

HC GWAS: In contrast to the two samples discussed above, the GWAS
summary statistics obtained from the HC GWAS are based on genetic analysis of
an indirect measure of BV, i.e., HC in children and adults (see Supplementary
Note 2 for more information on the relation between HC and BV). These summary
statistics were generated by meta-analyzing 11 population-based cohorts, resulting
in a total sample size of N= 18,881. All studies included in the meta-analysis were
approved by the local ethics committees, and informed (or parental) consent was
obtained from all participants. Data collection, genotyping, imputation and analysis
procedures are described in detail elsewhere (see Haworth et al.11). Since not all
individual studies that were included in the HC meta-analysis corrected for height,
we first conditioned the HC GWAS summary statistics on height using a procedure
similar to that described for the ENIGMA data (rg= 0.39 between height in UKB
and uncorrected HC summary statistics from Haworth et al.11.

Genotyping, imputation and quality control. The genotype data that we used was
released by the UKB in March 2018, and concerns an updated version of data
released earlier (July 2017). Details on the collection and processing of the genotype
data are described elsewhere17. To summarize, the UKB genotyped in total 489,212
individuals on two custom made SNP arrays (UK BiLEVE AxiomTM array covering
807,411 markers (n= 49,950) and UKBTM Axiom array covering 825,927 markers
(n= 438,427), both by Affymetrix). The genotype arrays shared 95% of marker
content. Quality control executed by the UKB team resulted in a total of 488,377
individuals and 805,426 unique markers in the released data. In the version of the
data used for the current study (genotype data release of March 2018), genotypes
were phased and imputed by the UKB team to a combined reference panel of the
Haplotype Reference Consortium and the UK10K. Finally, imputed and quality-
controlled genotype data was available for 487,422 individuals and 92,693,895
genetic variants.

Prior to analysis, imputed variants were converted to hard call using a certainty
threshold of 0.9. In our own quality control procedure, we excluded variants with a
low imputation score (INFO score <0.9), low minor allele frequency (MAF < 0.005)
and high missingness (>0.05). Furthermore, indels that had the same chromosomal
location were excluded. This resulted in a total of 9,203,453 variants used for
downstream analysis.

To reduce bias of the results due to population stratification, we only included
individuals from European descent in our analyses. To this end, we projected
principal components (PC’s) from the 1000 Genomes reference populations onto
the called genotypes available in the UKB data. Participants for whom the projected
principal component score was closest (using the Mahalanobis distance) to the
average score of the European 1000Genomes sample66 were considered to be of
European descent. Participants having a Mahalanobis distance >6 S.D. were
excluded from further analysis. In an additional quality control step, we excluded
participants that (1) had withdrawn their consent, (2) were related to other
participants according to the UKB team (i.e., subjects with most inferred relatives,
third degree or closer, were removed until no related subjects were present), (3)
reported a gender that did not match their genetic gender, or (4) showed sex-
chromosome aneuploidy. After filtering availability of imaging data, and MRI scan
quality, 17,062 individuals remained for analysis.

GWAS of BV in UKB. The genome-wide association analysis (GWAS) of BV in the
UKB data was conducted in PLINK67,68, using a linear regression model with
additive allelic effects. In order to correct for potential subtle population stratifi-
cation effects, we included 10 genetic PC’s as covariates. Genetic PC’s were com-
puted using FlashPCA269 in the QC’ed subset of unrelated European subjects,
retaining only independent (r2 < 0.1), relatively common (MAF > 0.01) and geno-
typed or very high imputation quality (INFO= 1) variants (n= 145,432 markers).
We refer to Supplementary Note 7 for a brief comparison of the UKB BV GWAS
results including either the first 10 or the first 100 genetic PC’s as covariates.

Additional covariates included in the analysis were: age, sex, genotype array,
assessment center, and standing height (since the genetic correlation between BV
and height in the UKB is rg= 0.26). We also included the TDI as covariate to
correct for potential confounding factors. TDI is strongly associated with individual
levels of deprivation70 and health-related factors including self-reported health19,
life style factors (smoking71, vegetable intake72), chronic illness73, and all cause
mortality20. We believe that inclusion of TDI as a covariate is the most appropriate
correction for SES and health-related factors, since this measure has a correlational
pattern with a wide variety of potential confounding factors, and because of its
availability in all UKB participants.

Conditional GWAS (mtCOJO). Multi-trait-based conditional and joint analysis
using GWAS summary data (mtCOJO55) can be used to conduct conditional
GWAS analyses. The mtCOJO method is integrated in the GCTA74 software, and
requires summary-level GWAS data to obtain GWAS results for phenotype A that
are conditioned on the genetic signal of phenotype B. In the current study, we used
mtCOJO to correct the GWAS summary statistics of ICV (ENIGMA) and head
circumference (HC-GWAS) for their overlap with the genetic signal of height. The
height summary statistics used in mtCOJO were obtained from a GWAS that we
ran on standing height in the UKB sample (N= 385,748). The conditioned GWAS
results were subsequently included in the GWAS meta-analysis of BV described in
the following section.

GWAS meta-analysis of BV. Before carrying out the meta-analysis of BV, we
performed additional filtering and prepared the summary statistics for each of the
individual cohorts. First, within the ENIGMA data and the HC-GWAS data,
variants that were available for N < 5000 were excluded. Second, in the UKB data
we identified some instances where there were multiple variants on the same
position, whilst having different alleles. These variants were excluded from further
analysis. Lastly, we aligned the allele coding of indels in the ENIGMA data to
match the coding in the UKB data. A number of indels that were not present in the
UKB data were excluded from analysis, since we used the UKB data as reference
data for downstream analyses. The summary statistics from the UKB, ENIGMA,
and the HC-GWAS consortium showed strong genetic correlations (rg ranging
between 0.75 and 1; see Supplementary Data 1), supporting our choice for a meta-
analytic approach.

Using a sample-size weighted z-score method in METAL26 we combined the
GWAS on BV in the UKB data (N= 17,062), the GWAS on ICV (conditioned on
height) in the ENIGMA results (N= 11,373), and the GWAS on HC (conditioned
on height) in the HC-GWAS results (N= 18,881), resulting in a total sample size of
N= 47,316 (see Supplementary Fig. 1).

Intelligence - GWAS summary statistics. We used recently published GWAS
meta-analysis summary statistics of intelligence53 to study the genetic overlap with
BV. Data collection procedures and methods are described in detail elsewhere53. In
comparing the results of BV and intelligence, we updated some of the downstream
analyses for intelligence (e.g., we used FUMA version 1.3.5 instead of 1.3.0, we
explored a slightly different collection of gene sets, and used GTEx data v7 instead
of v6.1). Therefore, gene-based findings for intelligence presented in the current
study may deviate slightly from those presented in the original study53 (Supple-
mentary Data 6). We applied Bonferroni correction for multiple testing to the
meta-analytic variants P-values to identify to intelligence associated genetic
variants.

Genomic risk loci and functional annotation. We used FUMA27 (v1.3.5) for the
functional annotation of the BV meta-analysis results. FUMA is an online platform
that takes GWAS summary statistics as input, and subsequently annotates, prior-
itizes, and visualizes the results.

Prior to defining genomic risk loci, FUMA identifies variants that are GWS (5 ×
10−8), and independent (r2 < 0.6) as independent significant variants. In the next
step, independent significant variants that are independent from each other at r2 <
0.1 are denoted lead variants. Genotypes from the UKB were used as reference data
to infer LD. Finally, FUMA characterizes genomic risk loci by merging LD blocks
that are located close to each other (<250 kb apart). Thus, it is possible that one
genomic risk locus contains multiple independent significant variants or lead
variants.

In order to obtain information on the functional consequences of variants on
genes, FUMA performs ANNOVAR75 gene-based annotation using Ensembl genes
(build 85) for all variants in LD (r2 > 0.6) with one of the independent significant
variants and having an association P-value lower than 1 × 10−5. In addition,
Combined Annotation Dependent Depletion (CADD) scores76, Regulome DB
scores77, and 15-core chromatin state78,79 are annotated to variants by matching
chromosome position, reference, and alternative alleles. CADD scores can be used
to prioritize genetic variants that are likely to be pathogenic and/or deleterious
(CADD scores >12.37 suggest a variant is deleterious). The score is a single
measure combining various annotations, and has been shown to correlate with
pathogenicity, disease severity, and experimentally measured regulatory effects and
complex trait associations76. RegulomeDB scores77 characterize variants by their
likelihood to have a regulatory function (with lower scores indicating higher
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probability of regulatory function). Scores range from 7, meaning that there is no
evidence of the variant having a regulatory function, to 1a, meaning that a variant
is likely to affect binding and is linked to the expression of a gene target77.
Chromatin state was predicted by ChromHMM79 for 127 cell types, using 15 states
to classify and describe variants.

Gene mapping. Using FUMA27, all variants in genomic risk loci that were GWS
(P < 5 × 10−8) or were in LD (r2 > 0.6) with one of the independent significant
variants, were mapped to genes. Variants could be annotated to a gene by either
of three strategies. First, positional mapping maps variants to protein-coding
genes based on physical proximity (i.e., within 10 kb window). Second, eQTL
mapping maps variants to genes whose expression is associated with allelic
variation at the variants level. Information on eQTLs was derived from three
publicly available data repositories; GTEx80 (v7), the Blood eQTL browser81,
and the BIOS QTL browser82. This strategy maps variants to genes up to 1 Mb
apart (cis-eQTLs). We applied a false discovery rate (FDR) of ≤0.05 to limit the
results to significant variant gene pairs. Third, variants were mapped to genes
based on significant chromatin interactions between promoter regions of genes
(250 bp up- and 500 bp downstream of the TSS) and a genomic region in a risk
locus. In contrast to eQTL mapping, and in the absence of a distance boundary,
chromatin interaction mapping may involve long-range interactions. The
resolution of chromatin interactions was defined as 40 kb, and hence, interac-
tion regions may comprise multiple genes. In order to prioritize genes impli-
cated by chromatin interaction mapping, information on predicted enhancers
and promoters in 111 tissue/cell types from the Roadmap Epigenomics Project78

was integrated. We used FUMA to filter on chromatin interactions for which
one interaction region overlapped with predicted enhancers, and the other with
predicted promoters 250 bp up- and 500 bp downstream of the TSS site of a
gene. At the time of writing, FUMA contained Hi-C data of 14 tissue types from
the study of Schmitt et al.83. An FDR of 1 × 10−5 was used to define significant
interactions.

Gene-based analysis. Genome-wide gene-based analysis (GWGAS) has the
potential to identify genes associated to a trait of interest despite the genetic signal
of individual variants in or nearby the gene not reaching genome-wide significance
in variant-based analyses. Using the P-values from the variant-based analysis as
input, GWGAS tests the joint signal of all variants in a gene with the phenotype,
while accounting for LD between those variants. In addition to gene-mapping in
FUMA, we therefore also conducted gene-based analysis in MAGMA30 to assess
the joint effect of all variants within all 19,427 protein-coding genes included in the
NCBI 37.3 database. MAGMA requires as input the P-values derived from variant-
based analyses, in this case, the BV meta-analysis results. All variants in our BV
meta-analysis were annotated to genes, resulting in 18,168 genes that contained at
least one variant in the BV meta-analysis. Besides variants located within a gene, we
also included variants lying within 2 kb before and 1 kb after the TSS of the gene.
We used Entrez ID as the primary gene ID. MAGMA’s gene-based analysis uses a
multiple linear PC regression, where an F-test is used to compute the gene P-value.
The model takes linkage disequilibrium between variants into account. Genes were
considered to be genome-wide significantly associated if the P-value survived a
Bonferroni correction for multiple testing (0.05/number of genes tested: P < 2.75 ×
10−6).

Functional gene set analysis. Gene set analysis was performed using
MAGMA30, testing 12,191 predefined gene sets in an exploratory fashion.
Selected gene sets included canonical pathways (n= 2199) and GO gene sets
(n= 9996). All gene sets were obtained from the Molecular Signatures Database
(MSigDB, version 7.0). For all gene set analyses, competitive, rather than self-
contained, P-values are reported. Competitive gene set analysis tests whether the
joint association of genes in a gene set with the phenotype of interest is stronger
than that of a randomly selected set of genes of similar size. This approach
provides stronger evidence for association of the gene set compared to a self-
contained test, where the joint association of genes in a gene set with the phe-
notype is tested against the null hypothesis of no effect.

Gene-expression analysis. To assess whether genes associated to our traits of
interest are disproportionately expressed in certain tissue- and cell types, we
applied MAGMA’s gene-expression analysis to investigate associations with several
gene expression profiles. First, we tested tissue gene-expression in 53 different
tissue types obtained from the GTEx portal (v.7), which include gene-expression
data from 13 brain tissue types39. Secondly, we tested gene-expression in 565
distinct adult mouse brain cell types from Dropviz40. These data were collected
through the use of the Drop-seq technique84 by assessing RNA expression in
690,000 individual cells from nine brain regions of the adult mice brain, which
were subsequently grouped to 565 transcriptionally distinct groups of cell types.

Gene set and gene-expression analyses were Bonferroni corrected for the total
number of gene sets, tissue types and single-cell types tested in MAGMA (P <
3.90 × 10−6 (=0.05/(12,191+ 53+ 565)).

Conditional gene set analyses. In order to gain more insight in the genetic
pathways associated to BV and intelligence, we performed conditional gene set
analyses using MAGMA30. Conditional analyses are conducted to identify
MsigDB gene sets that represent independent associations (i.e., in a regression-
based framework, we assessed the association between our trait of interest (e.g.,
BV) and a gene set, conditional on another trait (e.g., intelligence)). Specifically,
we determined which gene set associations remain for BV when we condition on
intelligence, and vice versa. This approach provides information on whether
gene sets are uniquely associated to BV or intelligence, or rather, shared between
both traits. For example, if the P-value of association between a gene set and BV
increases when conditioning on intelligence (i.e., less significant), then this
suggests that the gene set association is likely shared between both traits, while if
the P-value between a gene set and BV is unaffected by conditioning on intel-
ligence, then this implies that the association is specific to BV, i.e., not shared
with intelligence. Note however that even when the association between a gene
set and a phenotype is largely explained by a second, overlapping, gene set, its
conditional P-value will still be reduced compared to its marginal association P-
value. Therefore, de Leeuw et al.38 advise to assess the relative degree of asso-
ciation remaining for each gene set. In addition, we conducted pairwise condi-
tional gene set analysis for all 18 gene sets that were significantly associated to
BV. Gene-sets that showed a significant conditional P-value in more than half of
the conditional analyses were denoted as ‘largely independent’ gene-set
associations.

SNP-based heritability and genetic correlations. We used LDSC21 to estimate
the proportion of phenotypic variance that can be explained by common variants, a
statistic known as SNP-based heritability, h2SNP. We used precomputed LD scores
that were calculated using 1000 Genomes European data.

Genetic correlations (rg) between the signal from our BV meta-analysis,
intelligence53, and 24 psychiatric, behavioral, and lifestyle-related traits for which
summary-level data were available, were also calculated using LDSC85. The rg
estimated by LDSC is an unbiased estimate, and may exceed [−1, 1] when standard
errors are large, and the genetic correlation between studies is high.

Genetic correlations for which the P-value survived the correction for multiple
testing (Bonferroni-corrected P < 0.002 (=0.05/25)) were considered significant.

Partitioned heritability. In order to determine whether some functional categories
of the genome contribute more than others to the SNP-heritability (h2SNP) of BV,
we performed stratified LDSC29. Using this method, we calculated whether any of
the 28 specific genomic categories included in the analysis was enriched for variants
that contribute to h2SNP. Enrichment here is defined as the proportion of h2SNP in a
given category divided by the proportion of variants in that category (e.g., if
enrichment in intronic regions is 4.75, this indicates that this functional category
has a 4.75-fold higher contribution to h2SNP relative to the proportion of variants
annotated to that category).

MR analysis. MR analysis was performed using generalized summary-data-based
Mendelian randomization (GSMR55). The main goal was to examine whether the
genetic correlation between BV and intelligence (rg= 0.24) might be explained by
directional effects. Analyses were conducted using forward and reverse GSMR,
testing for uni- and bidirectional effects between BV and intelligence. Variants that
showed clear pleiotropic effects on the exposure phenotype and the outcome (i.e.,
instruments that are associated to both BV as well as intelligence) were excluded
from analysis using the HEIDI outlier method. In addition, we excluded variants
that are in LD (r2 > 0.1) with one another across both tests (i.e., variants that are
associated to either BV or intelligence, but are in LD with a second variant that is
used as an instrument for the other trait).

Linking expression of overlapping genes to brain regions. We investigated
whether genes overlapping between BV and intelligence show different brain
expression patterns than non-overlapping genes, which may provide evidence of
whether certain brain areas are more involved in the genetic association between
BV and intelligence. To this end, we first performed gene-mapping with MAGMA
and FUMA based on the summary statistics of the GWAS of each trait separately,
after which we extracted the set of genes implicated by any of the gene-mapping
strategies in both traits. Subsequently, we extracted the cortical gene-expression
profile for each of the overlapping genes from the AHBA61, which describes gene-
expression data per gene across distinct cortical areas. An expression profile of the
set was obtained by taking the average expression across the 92 genes. We also
performed clustering on the individual correlation patterns for each of the
expression profiles of each of the 92 genes separately, by computing a 92 × 92 gene-
to-gene correlation matrix, with the level of correlation between two genes taken as
the Pearson correlation coefficient between their cortical expression profiles. This
matrix was subdivided into clusters (also called modules) using Newman’s mod-
ularity algorithm86, maximizing for each cluster the intra-cluster cohesion and
minimizing cohesion between genes of different clusters. Per cluster, a cluster-level
expression profile was computed by calculating the average gene expression profile
across all genes in the given cluster, resulting in clusters of genes showing distinct
brain maps.
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Interaction gene set analyses. Aiming to determine whether genes associated to
both BV and intelligence are over- (or under-) expressed in specific brain regions, we
performed interaction analysis as implemented in MAGMA (v1.07b). This analysis
tested whether the combined involvement of a gene set (here: genes related to BV)
and continuous gene properties (here: gene expression) is different from their
individual effects on intelligence. A positive interaction effect would suggest that,
within the set of BV-related genes, the relation between expression and gene-based
Z-scores for intelligence is stronger compared to other genes (i.e., all genes for which
both expression data from AHBA, as well as gene-based Z-scores for intelligence
were available). This would indicate that gene expression in that specific region plays
a particular role in the genetic relation between BV and intelligence.

An interaction analysis was conducted separately for gene expression in each of
57 brain regions defined in the AHBA61. To control for potential variation in
general expression levels across genes, we conditioned on the marginal effects of
the BV-related gene set and average gene expression across all 57 regions, as well as
for their interaction. The set of BV-related genes consisted of all genes that were
significant in MAGMA’s gene-based analysis and/or mapped from variant-level
results in FUMA. Interaction effects were deemed significant if their P-value
exceeded the Bonferroni-corrected threshold of P < 8.77 × 10−4 (0.05/57).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Our policy is to make genome-wide summary statistics publicly available. Summary
statistics from our BV meta-analysis and the height-corrected summary statistics in UKB
are available for download at the website of the Department of Complex Trait Genetics,
CNCR: https://ctg.cncr.nl/software/summary_statistics. Data restrictions do not allow
redistribution of the summary statistics for ICV and head circumference. To replicate our
results, the uncorrected summary statistics can be requested for download from the
ENIGMA and Max Planck Institute websites. The variant effect sizes can be subsequently
corrected for height (summary statistics available from GWAS ATLAS; ID 3187) using
the mtCOJO software. The GWAS summary statistics from the intelligence meta-analysis
conducted by Savage et al.53 are also available from the CTG website.
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