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SUMMARY

Cognitive activity emerges from large-scale neuronal
dynamics that are constrained to a low-dimensional
manifold. How this low-dimensional manifold scales
with cognitive complexity, and which brain regions
regulate this process, are not well understood. We
addressed this issue by analyzing sub-second
high-field fMRI data acquired during performance
of a task that systematically varied the complexity
of cognitive reasoning. We show that task perfor-
mance reconfigures the low-dimensional manifold
and that deviations from these patterns relate to per-
formance errors. We further demonstrate that indi-
vidual differences in thalamic activity relate to
reconfigurations of the low-dimensional architecture
during task engagement.

INTRODUCTION

The human brain is a complex adaptive network in which coor-

dinated activity induces dependencies between a diverse set of

specialized regions that define its current functional state. A

common characteristic of complex systems is that the degrees

of freedom traversed by its dynamics are substantially lower

than the number of components that comprise the system.

This means that the functional principles of a neural system

are typically opaque when analyzing individual elements in

isolation. However, there are often distributed patterns that

explain substantial variation in the data, such that the system

demonstrates low dimensionality at the level of large-scale

neural populations (Cunningham and Yu, 2014; Break-

spear, 2017).
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Knowledge of the brain’s low-dimensional architecture affords

a deeper understanding of the core principles underpinning

whole-brain patterns of neural activity (Chialvo, 2010), along

with an ability to dynamically track complex system activity as

a function of cognitive performance (Shine et al., 2019). Addition-

ally, this dimensionality reduction allows behavioral correlates to

be appropriately interpreted in terms of the low-dimensional

brain activity that underpins them (Huys et al., 2014; Kerkman

et al., 2018).

In previous work, we used a combination of principal-compo-

nent analysis and methods from dynamical systems theory to

characterize low-dimensional state space dynamics in blood-

oxygen-level-dependent (BOLD) data collected during the per-

formance of a range of diverse cognitive tasks, including

cognitive, mnemonic, emotional, social, and motor processing

(Shine et al., 2019; Figure 1A). We showed that large-scale brain

activity during execution of diverse cognitive functions could be

approximated by dynamics on a relatively simple orbit contained

within a low-dimensional phase space (or ‘‘embedding space’’).

The principal component (PC) that explained the most variance

across the tasks comprised an integrative core of regions across

frontal, parietal, and occipital cortices tasks (Figure 1A; Shine

et al., 2019). The first PC also tracked with whole-brain network

connectivity patterns and overlapped with known heterogeneity

in regional neuromodulatory receptor gradients (Shine et al.,

2019) and areas with heightened network controllability (Gu

et al., 2015).

The remaining PCs describing trajectories that engaged com-

binations of cognitive tasks: PC2–4 were associated with combi-

nations of different cognitive challenges and PC5was associated

with switches into and out of unique task states (Shine et al.,

2019). These findings suggest that state space dynamics

defined by the first few PCs capture meaningful neurobiological

processes that support distinct cognitive functions. However,

the nature and diversity of the tasks used in the original study
er 4, 2019 Crown Copyright ª 2019 Published by Elsevier Inc. 849
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Figure 1. Low-Dimensional Embedding and the Latin Squares Task
(A) The top five spatial principal components (PCs) that explain the majority of variance across multiple cognitive tasks (Shine et al., 2019).

(B) Latin Squares Task with three levels of problem complexity: binary (‘‘B’’; blue); ternary (‘‘T’’; yellow); and quaternary (‘‘Q’’; red)—the goal of the task is to

determine the shape denoted by the question mark (‘‘?’’).

(C) Informative sections of each puzzle, indicated by green shading.B trials required looking across as single row or column, T trials required searching over a row

and a column, andQ trials required searching over multiple rows and columns (eye movements were similar across conditions). Reasoning complexity increases

linearly from B to T to Q.

(D) Pearson’s correlation between accuracy on the LST and scores on Raven’s Progressive Matrices (RPM): r = 0.395; p = 0.016.

(E) Pearson’s correlation between mean reaction time on LST and scores on the RPM: r = �0.265; p = 0.003.
precluded analyses of the role of the complexity of the cognitive

processes on the associated dimensionality of neural dynamics.

In addition, the spatial resolution of 3T fMRI limited the ability to

disambiguate the role of specific subcortical nuclei, such as the

thalamus, which play crucial roles in cognitive processing (Bell

and Shine, 2016; Hwang et al., 2017; Sherman, 2004; Hearne

et al., 2017).

To resolve the underlying dynamics associated with cognitive

complexity with increased precision, we acquired 7T BOLD data

at high spatial and temporal resolution while 60 participants per-

formed a cognitively challenging task (the Latin Squares Task

[LST]; Figure S1A) across different levels of complexity (Birney

et al., 2006; Hearne et al., 2017, 2019). Similar to the popular

game ‘‘Sudoku’’ (Ercsey-Ravasz and Toroczkai, 2012), the LST

requires participants to identify a latent organizational pattern

among a set of visual shape elements (Figure 1B). Performance

on the LST can be used to objectively quantify the ability of the

brain to solve reasoning problems of increasing complexity (Bir-

ney et al., 2006; Halford et al., 2007). Solving the most

challenging problems of the LST (a constrained combinatorial

optimization problem) requires the on-line manipulation of a

number of abstract associations (Halford et al., 2007; Rutish-

auser et al., 2018) and the exploration of a large proportion of

the search space (Figure 1C). Accuracy on the LST decreases

linearly as a function of task complexity (Hearne et al., 2017,
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2019; Figure S1A) and LST performance correlates with perfor-

mance on the Raven’s Advanced Progressive Matrices (RPM)

task (accuracy: r = 0.395, p = 0.016; Figure 1D; reaction time:

r = -0.265, p = 0.003; Figure 1E), a standard measure of fluid in-

telligence (Gray et al., 2003).

By translating trial-locked hemodynamic responses from the

LST into the low-dimensional embedding space, we were able

to calculate the temporal trajectories of the top 5 PCs (tPC*)

that were trained on data from multiple tasks (Shine et al.,

2019) in order to determine whether the components were sen-

sitive to alterations in complexity-driven modulations of cogni-

tive load (Birney et al., 2006; Hearne et al., 2019). In this way,

the original tasks from the Human Connectome Project (HCP)

cohort were able to act in themanner of traditional ‘‘control’’ con-

ditions, allowing us to trace state-space dynamics within a multi-

task embedding space. Based on our previous work (Hearne

et al., 2017; Shine et al., 2019), we hypothesized that tPC*1,

which tracks with network-level integration (Shine et al., 2019),

should relate here to increases in cognitive complexity.

RESULTS

As predicted, modulation of cognitive complexity had a marked

effect on low-dimensional flowwithin the state space (Figure 2A).

The dimensionality of the brain state while completing the task
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Figure 2. The Effect of Cognitive Complexity on

Low-Dimensional Brain Dynamics

(A) State-space embedding of the trajectories (tPC*) of

PC1/2/3 as a function of increasing cognitive complexity

on the LST task. Different lines depict the trajectory

associated with the three different levels of task

complexity: binary (low complexity), blue; ternary

(medium complexity), yellow; and quaternary (high

complexity), red.

(B) State-space embedding of tPC*1, tPC*2, and tPC*5,

which shows reconfigurations as a function of cogni-

tive complexity.

(C) State-space embedding of tPC*1, tPC*4, and tPC*5,

which is relatively invariant with respect to cognitive

complexity.

(D) Scatterplot showing significant positive Pearson’s correlation (r = 0.229; p = 0.023) between fluid intelligence scores on the RPM and engagement of tPC*1
during Q trials of the LST (the effect was selective for tPC*1; p < 0.001).
was inversely correlated with cognitive complexity: that is,

increasing difficulty on the LST led to a greater recruitment of

tPC*1, which in turn explained the most variance in our task

(R2 = 50.10% ± 5.7%). We observed a parametric increase in

tPC*1 (frontal, parietal, occipital cortices, and striatum; 5.9–9.9

s; p < 10�5; p value corrected for multiple comparisons across

the trial; Maris and Oostenveld, 2007) and tPC*5 (motor and fron-

tal cortices; 7.0–9.9 s; p < 10�5) and a decrease in tPC*4 (midline

frontoparietal cortices; 8.2–9.9 s; p < 10�5; Figure S2) during the

reasoning portion of the task. Increasing cognitive complexity

also altered the temporal relationship between tPC*1 and both

tPC*2 and tPC*3 (Figure 2A). The trajectories were positively

correlated at low task complexity (i.e., B trials) but became pro-

gressively more anti-correlated at higher complexity (i.e., Q tri-

als; all p < 0.001; Figures 2A and 2B for tPC*1, tPC*2, and

tPC*5). Crucially, cognitive complexity did not impact all dimen-

sions within the data (i.e., the combined trajectories of tPC*1,

tPC*4, and tPC*5; Figure 2C), suggesting that cognitive

complexity forces an increased separation of the relative flow

between specific portions of the low-dimensional state space.

More broadly, the findings suggest that the brain’s capacity to

recruit additional functionally specialized regions with increasing

task complexity and to integrate the information returned by

those regions (Hearne et al., 2017) is tied to its ability to engage

(and disengage) an intrinsic low-dimensional spatial mode (Rob-

inson et al., 2016).

Low-dimensional, state-space dynamics were also associ-

ated with individual differences in fluid intelligence. Individuals

with better scores on the RPM task showed stronger recruitment

of tPC*1 during the LST (0.0–8.2 s post-task onset; r R 0.3;

Figure 2D) and greater disengagement during rest (11.7–15.8;

r % �0.3). The relationship between tPC*1 engagement and

RPM held at higher levels of complexity (r[tPC*1Q,RPM] =

0.223, p = 0.043; r[tPC*1T,RPM] = 0.259, p = 0.023); however,

the relationship was not significant for B trials (r[tPC*1B,RPM] =

0.115; p = 0.190; Figure S2), likely due to ceiling effects (Fig-

ure S1B). Interestingly, the extent of impaired task performance

as a function of complexity was inversely correlated with tPC*1
engagement across subjects (r = �0.233; p = 0.036; Figure S2).

That is, individuals that performed the task correctly did not

require as much reconfiguration of the manifold as individuals

that struggled at higher levels of complexity. Together, these re-
sults suggest that low-dimensional, state-space trajectories are

sensitive to both state (Figures 2 and S2) and trait behavioral ef-

fects (Figure S2).

Next, we determined whether alterations in low-dimensional,

state-space dynamics were associated with performance errors

on the LST. Based on our previous work (Shine et al., 2019), we

hypothesized that task errors should reflect a failure to effectively

engage the low-dimensional dynamic flows associated with the

successful completion of the task. Examination of the low-

dimensional, state-space trajectory across levels of complexity

confirmed this hypothesis. Relative to correct trials, task errors

were associated with a failure to engage tPC*1 (4.6–9.4 s; p <

0.001; non-parametric permutation test with correction for mul-

tiple comparisons; Maris and Oostenveld, 2007) and tPC*5
(8.2–9.4 s; p < 0.001) and an inability to appropriately disengage

tPC*2 (1.7–5.3 s; p < 0.001; Figure 3A) relative to successful trials.

In addition, there was greater variance as a function of task

complexity, and this was more pronounced in error trials than

correct trials (Figure S3; p < 0.001). To quantify this effect, we

calculated the mean Euclidean distance between all Q trials

(i.e., both correct and error trials) and the mean correct Q trajec-

tory, which was created by collapsing across all correct Q trials

across sessions and participants. Error trials were significantly

more likely to deviate from the correctmanifold than correct trials

(Figure 3B; p < 0.05).

A putative benefit of the brain being organized as a low-dimen-

sional system is the ability to utilize the degeneracy inherent

within the CNS (Tononi et al., 1999) to facilitate effective behav-

ioral performance. A direct prediction from this framework is

that single-subject, low-dimensional, state-space dynamics

should relate to individual differences in task performance. To

test this hypothesis, we isolated the state-space trajectories for

each subject and each level of complexity. We then computed

the parametric effect of complexity for each trajectory and then

calculated the Euclidean distance that the top 5 PC* trajectories

for each subject deviated from the mean group-level correct

and confident parametric manifold trajectory (by construction,

high performing individuals contributed proportionally more to

the resulting manifold than poor performers). Importantly, this

approach identifies deviations of the trajectory of the entire brain

state and not simply a single PC trajectory, which could poten-

tially be corrected by compensations in other PC dimensions.
Neuron 104, 849–855, December 4, 2019 851
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Figure 3. The Effect of Cognitive Errors on

Low-Dimensional Brain Dynamics

(A) Mean trajectory of tPC*1/2/5 for correct (green)

versus error (purple) quaternary trials.

(B) Mean Euclidean distance of correct (green) and

error (purple) trials from the ‘‘correct’’ quaternary

manifold—bar depicts p < 0.05. Time on the x axis is

relative to the start of each trial (as estimated by the

FIR model).

(C) Scatterplot comparing LST accuracy (para-

metrically scaled across levels of complexity) and the

distance from the correct group-mean manifold (cor-

rect trials; parametrically across levels of complexity).

Results showed an inverse Pearson’s correlation (r =

�0.363; p = 0.004) between the two measures, indi-

cating that more accurate individuals traversed a

state-space trajectory close to the group average

trajectory, leading to correct and confident answers.

(D) Restoration to the correct manifold on trials that

began a large distance from the correct manifold for

correct (green) and error (purple) trials. Bars depict p <

0.05 from non-parametric permutation testing.
We thencorrelated the total deviation (in Euclideandistance) from

the correctmanifoldwith theperformance accuracy for each sub-

ject. We observed a robust, inverse correlation (r = �0.363; p =

0.004; Figure 3C), suggesting that subjectswith greater accuracy

on the LST were more likely to follow a state-space trajectory

closer to the group average correct trajectory. In other words,

the brain states of poor performers on the LST were often found

further away from the correct trajectory through state space.

Another hypothesized signature of low-dimensional neural or-

ganization is known as ‘‘restoration’’ (Hopfield, 1994), which re-

fers to the capacity of a system to leverage its low-dimensional

architecture in order to ‘‘restore’’ noisy deviations from the loca-

tions in state space that might otherwise lead to errors in perfor-

mance. To test for restoration, we identified trials in which the

trajectory began a substantial distance (i.e., >66th percentile;

defined as above) from the correct manifold (calculated on the

remaining trials). There was significantly greater restoration of

the low-dimensional trajectory on trials that began ‘‘off’’ the

manifold for correct trials (4.1–6.4 s; p < 0.001; Figure 3D), but

not for error trials. That is, trials that began off the manifold but

were restored were more likely to lead to correct performance

on the task. Together, these results suggest that cognitive errors

can be conceptualized as a failure to maintain an appropriate

low-dimensional trajectory in state space.

A plausible candidate for shaping high-dimensional neural ac-

tivity onto relatively low-dimensional manifolds is the thalamus

(Hearne et al., 2017; Sherman, 2004; Figure 4A). Although tradi-

tionally viewed as a simple ‘‘relay’’ between specialized regions

of the cerebral cortex, the thalamic nuclei also play a crucial role

in arousal (Liu et al., 2018; Parvizi and Damasio, 2001; Stitt et al.,

2018), memory (Jensen et al., 2002; Van der Werf et al., 2003),

attention (Liu et al., 2012; Saalmann and Kastner, 2011), learning

(Sarasso et al., 2018), and cognition (Halassa and Kastner, 2017;

Hwang et al., 2017). Anatomically, numerous individual thalamic

nuclei are known to project to multiple cortical regions (Behrens
852 Neuron 104, 849–855, December 4, 2019
et al., 2003; Selemon and Goldman-Rakic, 1988). This diverging,

few-to-many thalamocortical connectivity pattern led us to pre-

dict a strong temporal relationship between thalamic activity

and low-dimensional state engagement across the cortex.

To test this hypothesis, we leveraged the high spatial specificity

of the7T fMRIdata toextract timeseries from threedistinct groups

of thalamic nuclei (medial, posterior, and anterolateral; Figure 4A;

see Table S1 for complete list, including those regions excluded

due to spatial limitations) that are traditionally associated with

separate cognitive functions (Niemann et al., 2000). Although the

distinctions are not absolute (Jones, 2001), the anterolateral nu-

clear group (i.e., ventral anterior and lateral dorsal nuclei) are typi-

cally associated with sensorimotor function, the posterior nuclear

group (i.e., the pulvinar) with spatial attention, and the medial nu-

clear groupwithhigher cognitive functions, suchasworkingmem-

ory and attentional selection (Golden et al., 2016; Jones, 2001;

Zhouet al., 2016).Weobserveda linearparametric effect of cogni-

tive complexity (i.e., a linear increase across B/T/Q conditions) in

the posterior andmedial thalamic groups, but not the anterolateral

group. Interestingly, themedial and posterior trial-locked finite im-

pulse response (FIR) time series each peaked prior to the engage-

ment of tPC*1. However, there was not a consistent pattern

observed across subjects (t = 1.02; p = 0.312), suggesting that

the temporal precedence may instead be reflective of individual

differences in thalamic and tPC*1 engagement across the task.

Despite the lack of a consistent intra-subject temporal pattern,

we did observe a positive relationship between the timing of the

peak of medial and tPC*1 parametric effect (Spearman’s rho =

0.315; p = 0.014), suggesting a stable correspondence across

subjects. As such, these results are consistent with findings

from invasive recordings of neural activity suggesting that

thalamic activity drives activated, gamma-frequency ‘‘up’’ states

in the cerebral cortex (Crunelli et al., 2015; McCormick et al.,

2015), which in turn protect the cortical state from otherwise dis-

tracting thalamic input (Watson et al., 2008).
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Figure 4. Relationship between the Thalamus and Low-Dimensional Architecture

(A) Three thalamic groups were defined: a medial group (pink), which comprised the parvocellular mediodorsal thalamic nucleus; a posterior group (blue), which

comprised four subdivisions of the pulvinar nucleus; and a anterolateral group (orange), which comprised nuclei from the anterior, lateral, and ventral nuclei of the

thalamus—left: axial slice through the brain (Montreal Neurological Institute [MNI] 1-mm template; Z = 10); right: 3-dimensional rendering of the approximate

spatial locations of the three groups.

(B) Parametric effect across complexity for each nuclear group—colored bars designate significant parametric effects (p < 0.05 from non-parametric permutation

testing) and the dotted black (tPC*1) line depicts mean low-dimensional trajectories.

(C) Spatial maps of PCs 1, 3, and 4 fit to the LST task data—for clarity, only positive loadings for single hemisphere are shown (patterns were symmetrical across

hemispheres).

(D) Pearson’s correlation across participants between the parametric effect of complexity and the dimensionality of the BOLD data (defined as the % variance

explained by the PC1–10, estimated across 333 cortical parcels). Across participants, activity in themedial group was selectively associatedwith a decrease in the

explained variance of PC1 (green) and an increase in the explained variance of PC3 (dark blue) and PC4 (dark red). Colored bars designate a significant parametric

effect (p < 0.05; based on non-parametric permutation testing). No other PCs showed a significant effect (gray lines).
These observations raise an interesting question: how does

the brain collapse activity onto a low-dimensional manifold while

retaining sufficient informational complexity to solve a chal-

lenging cognitive task, such as the LST? The thalamus has a

unique topological architecture, which may help to strike an

optimal balance between globally integrated and locally segre-

gated cortical states (Bell and Shine, 2016; Hwang et al., 2017;

Sherman, 2004). Previous work in vision science has suggested

that reducing the dimensionality of neural signals should be

balanced against the retention of the maximal amount of infor-

mation (DiCarlo and Cox, 2007; Cayco-Gajic and Silver, 2019),

an algorithmic capacity for which the thalamus is ideally suited.

In keeping with this view, we predicted that the thalamus should

promote integration by fostering connectivity between diverse

cortical regions required to perform the LST (Hearne et al.,

2017) while simultaneously ensuring that the low-dimensional ar-

chitecture of the brain retains the capacity for the flexible com-

parison of different potential solutions during the reasoning

portion of the task.

To test this hypothesis, we compared individual differences in

thalamic recruitment with cortical dimensionality across our

cohort of 60 participants. A new principal-component analysis

(PCA) was fit to cortical FIR data at the individual subject level,

and the percentage of variance explained by the first PC (fit on

whole brain data while holding out thalamic time series) was
used as an estimate of the dimensionality of the cortical state

across the task (Garrett et al., 2013), where high values denote

a relatively low-dimensional architecture (and vice versa). Indi-

vidual recruitment of the medial thalamic group was inversely

associated with the variance explained by the first PC across

cognitive complexity (Figure 4C; 4.1–8.1 s; p < 0.05; Figure S4;

STARMethods). This first PC loaded onto superior frontal, supe-

rior parietal, and occipital cortical regions (green in Figure 4C)

and was positively correlated with PC1 from the HCP dataset

(r = 0.744; p = 2.2 3 10�67). In contrast, individual thalamic

recruitment was positively associated with the variance ex-

plained by the third (blue in Figure 4C) and fourth (red in Figure

4C) PCs (Figure 4D), which loaded onto more lateral frontoparie-

tal (blue) and frontopolar (red) cortical regions, respectively. In

other words, the thalamus appears to play a crucial role in

fostering low-dimensionality (e.g., recruiting tPC*1; Figure 4B)

while preserving sufficient dimensionality to complete the task

(e.g., inverse correlation with variance explained in the first PC

and positive correlation with variance explained in PC3/4; Fig-

ure 4C), particularly in lateral frontoparietal control regions.

DISCUSSION

Our findings contribute to a rapidly growing literature on the

relationship between low-dimensional network dynamics and
Neuron 104, 849–855, December 4, 2019 853



the functional signature of whole-brain network activity (Cun-

ningham and Yu, 2014; Mante et al., 2013). Specifically, we

have shown that engagement of a low-dimensional manifold fa-

cilitates the amplification of higher-order cognitive processes

necessary for integrating multiple elements in a complex rela-

tional reasoning task. Our framework also allows the extension

of well-known concepts in cognitive neuroscience (such as the

functional antagonism between the frontoparietal and default

mode network; Fox et al., 2005) to the generation of novel

mechanistic hypotheses on brain dynamics supporting cogni-

tion. Crucially, this reframing allows us to track the primary

engagement and disengagement of the task-positive and

default mode networks (i.e., with the activity within tPC*1) along

with the coordinated temporal interactions present among

higher latent dimensions. Importantly, these patterns, which

also covary with cognitive complexity (see Figure 2), cannot

be captured through the lens imposed by traditional voxel-

wise analyses of brain imaging data. We were also able to

show that not all degrees of freedom in the low-dimensional

embedding are modulated by cognitive complexity (e.g., the

trajectories between tPC*1/4/5 were relatively oblivious to

complexity), suggesting that cognitive complexity leads to

distinct reconfigurations in state space dynamics. Moreover,

our results extend previous work in humans (Garrett et al.,

2018) and non-human primates (Baxter, 2013) by demonstrating

that medial thalamic nuclei play a key mediating role in the con-

trol of distributed cortical processing during high-level cognitive

operations.

The current study opens a number of research directions for

future work. First, whole-brain computational models should

pay more heed to the role of thalamic nuclei than their typical

focus on cortical dynamics (Breakspear, 2017). In particular,

modulating large-scale brain dynamics through changes in

modeled thalamic gain could offer important insights into the

sculpting of the low-dimensional flow according the relational

complexity seen here. Second, causally manipulating cortical

brain activity (e.g., with pharmacology or stimulation) and inves-

tigating alterations in low-dimensional functional architecture will

also elucidate the neural factors that instantiate balanced ampli-

fication in the brain (Stringer et al., 2016).
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Trajectories of top 5 cortical PCs 7T MRI scanner beta_score_top5.mat

Time series of 3 thalamic groups 7T MRI scanner thal_score1.mat
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to andwill be fulfilled by the Lead Contact, JamesM.

Shine (mac.shine@sydney.edu.au).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Participants
Sixty-five healthy, right-handed adult participants (18-33 years) were recruited, of whom 60 were included in the final analysis (28

females). Participants provided informed written consent to participate in the study. The behavioral and neuroimaging data were re-

ported in an earlier study (Hearne et al., 2017), but that study focused on a different question to the one addressed here. The research

was approved by The University of Queensland Human Research Ethics Committee.

METHOD DETAILS

Summary
High spatiotemporal resolution 7T BOLD data were collected while participants performed a cognitively-challenging task (the Latin

Squares Task, LST) across different levels of complexity (Birney et al., 2006; Hearne et al., 2017). By translating trial-locked haemo-

dynamic responses from the LST into a previously-defined low-dimensional embedding space (Shine et al., 2019), we were able to

track the temporal trajectories of the top-5 PCs (tPC*) as a function of cognitive complexity. Significance testing involved the com-

parison of each tPC* trajectory across cognitive complexity using ANOVAs and subsequent pairwise t tests at each TR. We subse-

quently estimated trial-locked haemodynamic time series from pre-defined thalamic nuclear groups, and then contrasted these time

series with the trajectories of the low-dimensional states.

Latin Squares Task
Participants completed a modified version of the LST (Hearne et al., 2017), which is a nonverbal relational reasoning paradigm in

which reasoning complexity is parametrically varied with minimal working-memory demands. 144 unique LST items were presented

across three MR sessions (16 blocks), with 36 items in each relational complexity condition pseudo-randomly presented across four

different cognitive complexities (Figure 1B). Binary (‘B’) problems required integration of information across a single row or column;

Ternary (‘T’) problems involved integration across a single row and column; Quaternary (‘Q’) problems required integration of infor-

mation across multiple rows and columns; Null trials (which were not analyzed here) involved presentation of an LST grid, but with an

asterisk (*) instead of a questionmark. After a 4,000 ± 586msec cross-hair, each puzzle was presented for 5,000msec. After a 1,000 ±

586msec delay, participants were given 2,000msec tomanually designate a response using a four-button keypad. Participants were

instructed to solve for the target according to the following rule: Each shape can only occur once in every row and once in every col-

umn (similar to the game ‘Sudoku’). Motor responses were counterbalanced across individuals, such that equal numbers of partic-

ipants had the same shape-response mapping. Five-point Likert-scale confidence ratings were collected (Hearne et al., 2017), and

only trials with high confidence (trials rated 4 or 5 on the scale) were used in the final analysis (for both Correct and Error trials).

Although the LST required a search over a greater proportion of the task grid as a function of Complexity, previous work suggests

that eye movements were constrained to the same relative space across levels of complexity (Hearne et al., 2017).

Neuroimaging acquisition
1250 (�12minutes) whole-brain 7T task-fMRI echo planar imageswere acquired using amultiband sequence (acceleration factor = 5)

in the each of the three runs of the task (2mm3 voxels; 586ms TR; 23ms TE; 40� flip angle; 208mm FOV; 55 slices). Structural images

were also collected to assist functional data preprocessing (MP2RAGE sequence – 0.75mm3 voxels 4300ms TR; 3.44ms TE;

256 slices).
e1 Neuron 104, 849–855.e1–e3, December 4, 2019
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Data pre-processing
Imaging data were preprocessed using custom MATLAB scripts. DICOM images were first converted to NIfTI format and real-

igned. T1 images were reoriented, skull-stripped (FSL BET), and co-registered to the NIfTI functional images using statistical

parametric mapping functions. Segmentation and the DARTEL algorithm were used to improve the estimation of non-neural

signal in subject space and the spatial normalization. From each gray matter voxel, the following signals were regressed: linear

trends, signals from the six head-motion parameters (three translation, three rotation) and their temporal derivatives, white

matter, and CSF (estimated from single-subject masks of white matter and CSF). The aCompCor method (Behzadi et al.,

2007) was used to regress out residual signal unrelated to neural activity (i.e., five principal components derived from noise re-

gions-of-interest in which the time series data were unlikely to be modulated by neural activity). Participants with head displace-

ment > 3 mm in > 5% of volumes in any one scan were excluded (n = 5). No temporal filtering was applied to the data. Following

pre-processing, the mean time series was extracted from 333 pre-defined cortical regions-of-interest (ROI) using the Gordon

atlas (Gordon et al., 2016).

Finite Impulse Response
For each participant/session, a unique design matrix was implemented which modeled each trial (grouped according to Complexity

[i.e., B, T or Q; and Response [i.e., Correct or Error]) as a Finite Impulse Response (i.e., with unique regressors for each TR within a

trial), repeated across instances of each trial type. This approach allowed us to model the response of each region without specifying

a canonical haemodynamic response function across all regions and hence, augmented individual regional differences in haemody-

namic responses prior to converting the data into low-dimensional trajectories. Based on the predicted peak response for the active

task component of the LST (which we estimated by convolving a 5,000 msec boxcar function with a canonical HRF; TR = 586 msec),

only the first 17 TRs (�9.9 s) of each trial type were investigated (Hearne et al., 2017).

Low-dimensional state space embedding
The low-dimensional signature of a task is often related to relatively idiosyncratic aspects of the particular task, and hence can remain

relatively insensitive to the components that recur across tasks (Shine et al., 2019). To avoid this issue, we estimated the trajectory of

a set of five pre-defined principal components from a previous study that estimated the low-dimensional functional architecture of the

brain across a diverse set of cognitive tasks (Shine et al., 2019). Specifically, the trajectory of each PC was estimated by calculating

the weighted mean of the correspondence between the regional FIR b for each time point across all conditions and the spatial eigen-

vector associated with the top 5 PCs from our original study (Shine et al., 2019). Importantly, we chose to fit the PCs from our original

study (Shine et al., 2019) to this data so as to avoid circularity – that is, if we defined the PCs in this dataset (which was designed to

manipulate cognitive complexity), then by definition, we would be likely discover components that accordingly split variance in the

data caused by this parametric manipulation. Instead, by projecting these data into an independent space defined by other tasks, we

were able to create a stronger validation of the complexity hypothesis. To confirm that these trajectories were distinct from those

estimated directly from a PCA of the LST, we conducted a PCA on group-level data concatenated across sessions/trials (1st

5 PCs explained 86.95% ± 13.3 of the variance). While the first spatial PC was similar between the two approaches (rPC1 = 0.76),

the subsequent PCs were substantially less similar (mean rPC2-5 = 0.17).

Cognitive Modulation of the Manifold
Low-dimensional embeddings were visualized by projecting the mean state space trajectory for correct B, T andQ trials across par-

ticipants onto a 3D scatterplot (e.g., Figure 2A). Complexity effects were estimated by parametrically modulating the trajectories (i.e.,

B*1 + T*2 + Q*3) and comparing the data to a permuted null model in which regional signatures of the PC loadings were randomly

shuffled prior to estimating each tPC* trajectory (5,000 iterations; p < 0.05). Significance testing involved the comparison of each tPC*

trajectory across cognitive complexity using ANOVAs and subsequent pairwise t tests at each TR. tPC* trajectories from Correct and

Error trials from T andQ trials were pooled and compared statistically using paired t tests at each TR (there were insufficient Errors in

the B trials; Figure S1B).

To estimate whether the trajectory of correct and error trials deviated as a function of cognitive complexity, we calculated themean

Euclidean distance (absolute value of deviation between tPC* trajectories at each TR) between each trajectory. This approach al-

lowed us to determine whether individual high-dimensional trajectories deviated from the mean correct manifold in ways that may

have been lost by examining each tPC* trajectory in turn. We also estimated the standard deviation of each tPC* trajectory across

correct and error trials and compared them statistically using paired t tests (with correction from multiple comparisons).

To determine whether individual differences in performance accuracy on the LST related to specific low-dimensional trajectories

across state space, we separated the top 5 PC* trial-locked time series for each subject at each level of complexity and calculated the

parametric effect of complexity at each point of the task. We next computed the Euclidean distance of the top 5 PC* trajectories from

the mean correct parametric trajectory for each subject (defined as the group mean, correct and confident trajectory at each level of

complexity). We correlated the sum of the deviations (in Euclidean distance) from the mean correct manifold over the whole trial with

the performance accuracy for each subject using a Pearson’s correlation. Finally, we calculated the parametric effect of performance
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decrements as a function of cognitive complexity bymultiplying the drop in accuracy from T toQ trials (*t2) and adding this to the drop

in accuracy from B to T trials. We then correlated this value, across subjects, with the engagement of tPC*1 (parametrically across

levels of complexity).

To test the prediction that low-dimensional trajectories should demonstrate evidence of ‘restoration’ (Hopfield, 1994), we identified

the trajectories associated with the top 33.3% of deviations from the manifold in the first 5 TRs for both Correct and Error trials (sepa-

rately) and then used a series of independent samples t tests to determine whether the trajectory of the subsequently correct trials

more closely mapped the correct manifold over the course of trials. For all tests, statistical significance was defined using non-para-

metric permutation tests. In addition, we corrected for multiple comparisons using an approach that accounts for temporal smooth-

ness in the data (Maris and Oostenveld, 2007).

Raven’s Advanced Progressive Matrices
Outside of theMRI scanner, all participants completed the Raven’s Advanced ProgressiveMatrices (RPM; 40min time limit), which is

a standard and widely used measure of fluid intelligence (Gray et al., 2003). Accuracy on the RPMwas then compared with accuracy

(Figure 1D) and reaction time (Figure 1E) on the LST, andwith the low-dimensional state-space trajectories at the subject level using a

series of Pearson’s correlations (one for each trial time point). We also correlated performance on the RPM with the engagement of

tPC*1 (Area Under the Curve) across levels of complexity (Figure S2).

Thalamic Time Series
Mean regional time series were extracted from a set of 31 pre-defined thalamic nuclei from the Morel atlas template (Niemann et al.,

2000). Based on the limited spatial resolution of BOLD data (i.e., 2mm3 isotropic voxels), we further collapsed 17 of these regions into

three distinct groups: Medial group, comprising the parvocellular mediodorsal nucleus; Posterior group, comprising four pulvinar

nuclei (lateral, inferior, anterior and medial) and Anterolateral group, comprising twelve regions from anterior, lateral and ventral thal-

amus (Figures 4A and S4). Due to the aforementioned resolution limit, we were unable to model the lateral and medial geniculate

nuclei, or the intralaminar nuclei, with sufficient detail, and they were therefore excluded from further analysis. Following time series

extraction, an FIR analysis was conducted for each regional time series, and the data were then plotted and compared with tPC*

trajectories (Figure 4B). Complexity effects were estimated by parametrically modulating the trajectories (i.e., B*1 + T*2 + Q*3)

and comparing the data to a permuted null model in which regional signatures of the PC loadings were randomly shuffled prior to

estimating each tPC* trajectory (5,000 iterations; p < 0.05).

To test the prediction that thalamic recruitment preserves relative cortical dimensionality, we ran a separate PCA for each individual

on the cortical GLMfits acrossB, T andQ trials after first re-scaling the BOLDdata to have zeromean and unit variance.We then used

a series of Pearson’s correlations to compare the percentage of variance explained by the first PC (60 participant vector) with the

parametric effect of task complexity at each time point for the Medial, Posterior and Anterolateral thalamic groups in turn (60 partic-

ipants x 3 thalamic groups x 17 TRs). Statistical analysis was conducted using a non-parametric permutation approach, in which we

scrambled the first PC 5,000 times while keeping the thalamic time series constant and re-ran the analysis to populate a null distri-

bution. Values greater than (or less than) the 97.5th (2.5th) percentile were deemed significant.

QUANTIFICATION AND STATISTICAL ANALYSIS

Significance testing involved the comparison of each tPC* trajectory across cognitive complexity using ANOVAs and subsequent

pairwise t tests at each TR. tPC* trajectories from Correct and Error trials from T and Q trials were pooled and compared statistically

using paired t tests at each TR (there were insufficient Errors in the B trials; Figure S1B). We also estimated the standard deviation of

each tPC* trajectory across correct and error trials and compared them statistically using paired t tests (with correction frommultiple

comparisons). For all tests, statistical significance was defined using non-parametric permutation tests. In addition, we corrected for

multiple comparisons using an approach that accounts for temporal smoothness in the data (Maris and Oostenveld, 2007).

DATA AND CODE AVAILABILITY

Data and code are openly available at https://github.com/macshine/lst_statespace.
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