Neuroinformatics

Marcus Kaiser

Week 9: Feed-forward mapping networks
(textbook chapter 6)

(slides edited by Cheol Han)

Peceptrons (single layer)
- linearly separable
- error function, gradient descent

Multi-layer perceptrons
- back-propagation error signal
- overfitting and underfitting
- test and training data

- Radial Basis Functions
- EIman network (recurrent networks)

What can a neuron do?

Can a neuron represent Boolean functions? (McCulloch and Pitts, 1943)

Features x; and x, Feature vector x=(x, X,)

OR function A classifier ...

X, X. ¥ X What is a decision

0 0 0 I o boundary?

o 1 1

10 1 ™

1 1 1 \

M NG
AND function
X

X, X: Y

0 0 o o i

0 1 0 B

1 0 O

11 1 =t 4

O X (Warren McCulloch with his cat,

from Dr Arbib’s class note)

Perceptron (Rosenblatt, 1962)

A single layer neural network
The weights are learnable

Various activation functions (sigmoid, linear, threshold)

A. Boolean OR function membrane gain (activation)

potential function
X;
1
o o

\ I y
N\
L\ .
O ™ *~—,
W, X, +W,X,=0
State space Network topology

y(X)=g(WX;TW,X,) y=f(u-2)=Ff (Z u'jil‘j) :
J

(The leftmost figure is from Bishop, 1995)

Other gain / activation functions

Type. of _Graplucal Mathematical formula MATLAB implementation
function represent.

Linear / gM(x) = x X

Step 2% (x)= JT x>0 floor(0.5*(1+sign(x)))

_ | \0 elsewhere

mh;il;?]d- / gmm (x) =x O (x) x.*floor (0.5* (1+sign(x)))
Sigmoid g8 (x) = — 1./ (l+exp(-x))

1gmol ‘ T+exp(-x) APATA

Radi.al- / \ 8aSS () = exp(_xZ) exp (-X. A2

basis

Linear Separability

X.
X, X; Y |
0O 0 0 o o
o 1 1
i 0 1 \
1 1 1 \
© \._’x,
X1 Xo Y X2
1 2 0 o
2 1 0 \ o
3 '2 1 = X1
41 . \
®

Can examples be separated by a line?
Yes = linearly separable

Can a neuron approximate an arbitrary

X1 X2 Y
T a—
2 1 1
3 -2 5
4 1 7

A neuron can “associate’ inputs with a specific output.

function?

54

<

Use a linear gain function or a sigmoid.

A regressor ...
uses “red” range of
sigmoid to map the
membrane potential
to the output

1

0.5
=]
S 0
-
o —> /
0.5 //
-1
” 2 0 2 4

membrane potential

A classifier ...

uses “blue” range of
sigmoid to distinguish
a class with the other.

The population node as perceptron

Update rule: r** = g(wr'™) (component-wise: 1™ = g(>_; w;r;"))
For example: r'™ = x;, y = r°™, linear grain function g(x) = x:

Y = WiXq + WeXz

However, is it the
global minimum?
(start with multiple dw
initial weights!) ~Taw

How to find the right weight values: learning

Objective (error) function, for example: mean square error (MSE)
1 ou 2
E=3 Zj:(ri '~ %) <= MINIMIZE THIS

Gradient descent method: w; — wj; — Gg—f;:}.
l

== VVU — G(yj — r;’“‘)rji" for MSE, linear gain
|

The best "l E

weight \

N

dE

dE

E - — W (The figure is from Bishop, 1995)

Initialize weights arbitrarily
Repeat until error is sufficiently small

Apply a sample pattern to the input nodes: r? = r/" = ¢&"

Calculate rate of the output nodes: 1™ = g(>_; wj r")
Compute the delta term for the output layer: 6; = g’(h™™)(¢™ — r™)

I I

Update the weight matrix by adding the term: Aw; = ecS,-rj"‘

Batch algorithm vs. online algorithm

Batch: training step

Summing up

CIrors

One weight update
per training step

29999

Online: training step

Crror

—»| weight update

Crror

—»| weight update

Crror

—»| weight update

CIror

—»| weight update

(1]

CIror

—»| weight update

v

In order

training step
:training over all
given examples once

Why multiple training
steps with a small
learning rate, instead
of a training step with
a larger learning rate?

Which one does our
brain use?

0 ~JdJ oy b WMo

PerceptronTrain.m

%% Letter recognition with threshold perceptron
clear; clf;

nIn=12%«13; nOut=26;

wOut=rand (nOut, nIn)-0.5;

% training vectors

load patternl;

rIn=reshape (patternl’, nIn, 26);
rDes=diag(ones (1, 26));

% Updating and training network
for training_step=1:20;

% test all pattern
rOut=(wOutxrIn)>0.5;
distH=sum(sum((rDes-rQOut)."2))/26;
error (training_step)=distH;

% training with delta rule
wOut=wOut+0.1x (rDes—rOut) «xrIn’;

end

plot (0:19, error)
xlabel (' Training step’)
ylabel (' Average Hamming distance’)

It’s a batch algorithm...

Example: OCR
(digital representation of a letter)

I preprocessing ...
(How to encode input
vectors)

q

[T 1]]
I .

<15

l

O - O

——
. . —h
—

Optical character recognition: Predict meaning from features.
E.g., given features x, what is the character y

f:xeS! —yeST

Example: OCR

A. Training pattern B. Learning curve C. Generalization ability
12 %)
>> displayLetter (1) 2] Q Threshold activation
$44 210 @ | function
444 = 0225 Sy
b4 § 8 §
4 44 . 320
o -—
4 4 — o
P 444 !6 5 15
E =2 R
thtttttts 3 4 E 10 Max activation
LEGAAAMALRA o c function
b+ +44 j=2) D 5 |
4 s g 2 §)
44 +as = 2o
+44 P 0 <
0 5 10 15 20 0 01 02 03 04 05

Training step Fraction of flipped bits

Limitation of a Perceptron

B. Boolean XOR function

x

.y

X

a0 20X

1
a
f? ,

O
o
ty
ko\
//
K
o
\j

Can a Perceptron represent a XOR function?
It 1s not linearly separable!

How about different activation function?
How about more complex problems?

Multi-layer perceptrons

The multilayer perceptron (MLP) or Neural Networks
(NN)

nout

out

n"
O\
Ak
H{OK :
O
N

t

wh w
\ A hidden layer

Update rule: rowt — gout(weutgh(whrin))

i in) OE
Learning rule (error backpropagation): wj «— wj — € owy

MLP for XOR function

Learning curve for XOR problem

= O.SI"““’-\
o
—_
@ \
o 0.4 \ 1
= \
£ |
g 0.3 -
0.2 ————
0 5000 10000
Error in textbook Training steps

figure 6.9, p. 159

The error-backpropagation algorithm
(Rumelhart. Hinton and Williams. 1986)

Initialize weights arbitrarily
Repeat until error is sufficiently small
Apply a sample pattern to the input nodes: r? := rj" = &"

Propagate input through the network by calculating the rates of nodes in
successive layers Iz] = g(h) = g(>>; wjri ")
Compute the delta term for the output Iayer s =g (h"“‘)(gOul e

I I 5l
Back-propagate delta terms through the network § =g (h’)Z Wi dj
Update weight matrix by adding the term: Aw = eb’ /=1

5. Weights here can be viewed as providing
" degree of ‘credit’ or ‘blame’ to hidden units

v 0, =g’ (a) 2, Wy A,

(Figure is from a lecture note of Dr. Andy Philippides
http://www.cogs.susx.ac.uk/users/andrewop/Courses/NN/NNIndex.html)

Example of delta computation

input [0 1] with target [1 0], Learning rate n} = 0.1, all activation functions are linear units

v =-1 z,=1—"7*
x=0 wy=1
- 0 yi=2
'S —
<=
Q
.
S
2
S
L X,= 1 Ao 2
) =) -
) /
Z,=2 —*
vi=-l «— 91
X, - Ay wy=-1 A=-1
(> «— B[T-
g —
<
<
o
e
:
§ X2 «— A=-2
M >

) 4

@,

(Figure is from a lecture note of Dr. Andy Philippides
http://www.cogs.susx.ac.uk/users/andrewop/Courses/NN/NNIndex.html)

(8]

W oo JonU b W

mlp.m

%% MLP with backpropagation learning on XOR problem
clear; clf;

N_i=2; N_h=2; N_o=1;

w_h=rand(N_h,N_i)-0.5; w_o=rand(N_o,N_h)-0.5;

% training vectors (XOR)
r i=[01 01 ; 0011];
r d=[0 1 1 0];

% Updating and training network with sigmeid activation function
for sweep=1:10000;

% training randomly on one pattern
i=ceil (4*xrand);
r_h=1./(l+exp(-w_h+r_i(:,1)));

r o=1./(l+exp(-w_ox*r_h));
do=(r_o.x(l-r_o)).>x(xr_d(:,i)-r_o);
d h=(r_h.x(1l-r_h)).x(w_o’ »xd_o0);
w_o=w_o+0.7x(r_h+d_o’)’;
w_h=w_h+0.7*(xr_i(:,i)*d_h’")’;

% test all pattern
r_o_test=1./(l+exp(-w_ox(1l./(l+exp(—w_hx*xr_1i)))));
d(sweep)=0.5*sum((r_o_test-r_d)."2);

end
plot (d)

Overfitting and underfitting

Underfitting Overfitting

Why does it happen?

(Figures are from Bishop, 1995)

Overfitting and underfitting

Underfitting Overfitting
Why does it happen?
Network is too simple Network 1s too complex
Training 1s too short Training 1s too long

(Figures are from Bishop, 1995)

Test error vs. Train error

Can you believe that the given training examples capture the true function?

Examples are always noisy. So though the error over training examples is low,
NN can fail to capture the true function.

Test set: Another set of data, which is differently sampled from a training set.

0.3
N Best test error
QR T tes.t. (with reasonably

o training / low training error)
=

®
S
m Lo e o m em

0.0 1 L 1 N

o
N

4 6 8 10
order of polynomial

Lower «——— Network Complexity———p Higher
Underfitting < » Overfitting

cf. Cross-validation (Figure is from Bishop, 1995)

How many hidden neurons are required?
(design algorithm)

A node creation algorithm

Start with a small network and

repeat adding nodes systematically

until required performance is
reached. (Fig 6.15)

1.

Dynamic node creation (Ash)
when error is not decreasing,
add a node

Meiosis network (Hanson)
when a weight varied too
much, split a node into two.

A pruning algorithm

%

E 7(> h
Start with a large network and
remove nodes systematically.

1. Weight decay
Weight are always decaying and too small
weight (not used to generate an output) is
considered ‘disconnected’

2. Optimal brain damage
If the activation of a neuron is too small
compared to others, the neuron is removed.

MLP: Advanced concepts
(radial basis functions and recurrent networks)

Radial Basis Function (RBF) network

In general, “localized” radial basis function. ex. Gaussian functions.

V1

7

I

WIS

Input

P

V2

\

Q
~

Not

learnable

u(x,t)

T o
(http://www.mathworks.com/matlabcentral/fx_files/1

RN
%\‘

B2

e

T=0.180, N =858.

learnable

(Figure is from dtreg.com)

y
3205/1/burgers2d.png)

Output

X,

(from Bishop,1995)

If RBFs are well located, we can
capture a function with a small
number of RBFs and higher
accuracy.

What does their extents mean?
(their receptive fields)

How to locate centers?
(Self-organization or
unsupervised learning.)

Elman network

Remember a previous state. (A simplified version of recurrent network.)

1-to-1
Context Units ~ Connections
o Context units act as a memory
® (Just backup of hidden neurons, not a
o processing units)
®
® Hidden Layer
® \ .
: Co:r::;'zted : Output Layer
o \ o ®+—* Nom
L ./ Fully @ 1—* South
Inputs I ./ Connected [} » East
NNNNNNN —N Fully @ > West
SSSSSSS —S Connected —
EEEEEEE —E ? The output is based on the current
WWwwwww —Ww (sensory) inputs and context units.

Sequence of inputs coming.

(figure from http://www.fabioruini.eu/blog/2008/02/)

Full recurrent neural network
Can be learned through Back Propagation Through Time (Werbos, 1990)

2. Estimated

Remember a sequence of states : :
intention of actor

(part of the model, which uses BPTT)
BPTT

Target Activity
N Neuronal
) O O Recurrent Output Layer response

20 1

External Output Layer
(ol (o

Spikes/bin

Time
(Figure is from Rizzolatti et al.)

Continue estimation using the current
belief of the actor’s intention (the
previous network output)

Visual Input Layer Recurrent Input Layer

1. Actor’s current 3. What was the last
behavior estimated intention Mirror Neuron
of actor? Estimate other’s intention

(Bonauito, Rosta, & Arbib,2007)

Peceptrons (single layer)
- linearly separable
- error function, gradient descent

Multi-layer perceptrons
- back-propagation error signal
- overfitting and underfitting
- test and training data

- Radial Basis Functions
- EIman network (recurrent networks)

Further readings

Simon Haykin (1999), Neural networks: a comprehensive foundation, MacMillan
(2nd edition).

John Hertz, Anders Krogh, and Richard G. Palmer (1991), Introduction to the
theory of neural computation, Addison-Wesley.

Berndt Muller, Joachim Reinhardt, and Michael Thomas Strickland (1995), Neural
Networks: An Introduction, Springer

Christopher M. Bishop (2006), Pattern Recognition and Machine Learning,
Springer

Laurence F. Abbott and Sacha B. Nelson (2000), Synaptic plasticity: taming the
beast, in Nature Neurosci. (suppl.), 3: 1178-83.

Christopher J. C. Burges (1998), A Tutorial on Support Vector Machines for
Pattern Recognition in Data Mining and Knowledge Discovery 2:121-167.

Alex J. Smola and Bernhard Scholhopf (2004), A tutorial on support vector
regression in Statistics and computing 14: 199-222.

David E. Rumelhart, James L. McClelland, and the PDP research group (1986),
Parallel Distributed Processing: Explorations in the Microstructure of
Cognition, MIT Press.

Peter McLeod, Kim Plunkett, and Edmund T. Rolls (1998), Introduction to
connectionist modelling of cognitive processes, Oxford University Press.

E. Bruce Goldstein (1999), Sensation & perception, Brooks/Cole Publishing
Company (5th edition).

