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Week 9: Feed-forward mapping networks
(textbook chapter 6)

(slides edited by Cheol Han)



Peceptrons (single layer)
- linearly separable
- error function, gradient descent

Multi-layer perceptrons
- back-propagation error signal
- overfitting and underfitting
- test and training data

- Radial Basis Functions
- EIman network (recurrent networks)



What can a neuron do?

Can a neuron represent Boolean functions? (McCulloch and Pitts, 1943)

Features x; and x, Feature vector x=(x, X,)
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Perceptron (Rosenblatt, 1962)

A single layer neural network
The weights are learnable

Various activation functions (sigmoid, linear, threshold ....)
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(The leftmost figure is from Bishop, 1995)



Other gain / activation functions

Type. of _Graplucal Mathematical formula MATLAB implementation
function represent.

Linear / gM(x) = x X

Step 2% (x)= JT x>0 floor(0.5*(1+sign(x)))

_ | \0 elsewhere

mh;il;?]d- / gmm (x) =x O (x) x.*floor (0.5* (1+sign(x)))
Sigmoid g8 (x) = — 1./ (l+exp(-x))
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Linear Separability
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Can examples be separated by a line?
Yes = linearly separable



Can a neuron approximate an arbitrary
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A neuron can “associate’ inputs with a specific output.

function?
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Use a linear gain function or a sigmoid.

A regressor ...
uses “red” range of
sigmoid to map the
membrane potential
to the output
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A classifier ...

uses “blue” range of
sigmoid to distinguish
a class with the other.



The population node as perceptron

Update rule: r** = g(wr'™) (component-wise: 1™ = g(>_; w;r;"))
For example: r'™ = x;, y = r°™, linear grain function g(x) = x:

Y = WiXq + WeXz




However, is it the
global minimum?
(start with multiple dw
initial weights!) ~Taw

How to find the right weight values: learning

Objective (error) function, for example: mean square error (MSE)
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Initialize weights arbitrarily
Repeat until error is sufficiently small

Apply a sample pattern to the input nodes: r? = r/" = ¢&"

Calculate rate of the output nodes: 1™ = g(>_; wj r")
Compute the delta term for the output layer: 6; = g’(h™™)(¢™ — r™)

I I

Update the weight matrix by adding the term: Aw; = ecS,-rj"‘




Batch algorithm vs. online algorithm

Batch: training step

Summing up

CIrors

One weight update
per training step

29999

Online: training step

Crror
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In order

training step
:training over all
given examples once

Why multiple training
steps with a small
learning rate, instead
of a training step with
a larger learning rate?

Which one does our
brain use?
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PerceptronTrain.m

%% Letter recognition with threshold perceptron
clear; clf;

nIn=12%«13; nOut=26;

wOut=rand (nOut, nIn)-0.5;

% training vectors

load patternl;

rIn=reshape (patternl’, nIn, 26);
rDes=diag(ones (1, 26));

% Updating and training network
for training_step=1:20;

% test all pattern
rOut=(wOutxrIn)>0.5;
distH=sum(sum( (rDes-rQOut)."2))/26;
error (training_step)=distH;

% training with delta rule
wOut=wOut+0.1x (rDes—rOut) «xrIn’;

end

plot (0:19, error)
xlabel (' Training step’)
ylabel (' Average Hamming distance’)

It’s a batch algorithm...



Example: OCR
(digital representation of a letter)

I preprocessing ...
(How to encode input
vectors)
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Optical character recognition: Predict meaning from features.
E.g., given features x, what is the character y
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Example: OCR

A. Training pattern B. Learning curve C. Generalization ability
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Limitation of a Perceptron

B. Boolean XOR function
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Can a Perceptron represent a XOR function?
It 1s not linearly separable!

How about different activation function?
How about more complex problems?



Multi-layer perceptrons



The multilayer perceptron (MLP) or Neural Networks
(NN)
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MLP for XOR function

Learning curve for XOR problem
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The error-backpropagation algorithm
(Rumelhart. Hinton and Williams. 1986)

Initialize weights arbitrarily
Repeat until error is sufficiently small
Apply a sample pattern to the input nodes: r? := rj" = &"

Propagate input through the network by calculating the rates of nodes in
successive layers Iz ] = g(h) = g(>>; wjri ")
Compute the delta term for the output Iayer s =g (h"“‘)(gOul e

I I 5l
Back-propagate delta terms through the network § =g (h’ )Z Wi dj
Update weight matrix by adding the term: Aw = eb’ /=1

5. Weights here can be viewed as providing
" degree of ‘credit’ or ‘blame’ to hidden units

v 0, =g’ (a) 2, Wy A,

(Figure is from a lecture note of Dr. Andy Philippides
http://www.cogs.susx.ac.uk/users/andrewop/Courses/NN/NNIndex.html)



Example of delta computation

input [0 1] with target [1 0], Learning rate n} = 0.1, all activation functions are linear units
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(Figure is from a lecture note of Dr. Andy Philippides
http://www.cogs.susx.ac.uk/users/andrewop/Courses/NN/NNIndex.html)
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mlp.m

%% MLP with backpropagation learning on XOR problem
clear; clf;

N_i=2; N_h=2; N_o=1;

w_h=rand(N_h,N_i)-0.5; w_o=rand(N_o,N_h)-0.5;

% training vectors (XOR)
r i=[01 01 ; 0011];
r d=[0 1 1 0];

% Updating and training network with sigmeid activation function
for sweep=1:10000;

% training randomly on one pattern
i=ceil (4*xrand);
r_h=1./(l+exp(-w_h+r_i(:,1)));

r o=1./(l+exp(-w_ox*r_h));
do=(r_o.x(l-r_o)).>x(xr_d(:,i)-r_o);
d h=(r_h.x(1l-r_h)).x(w_o’ »xd_o0);
w_o=w_o+0.7x(r_h+d_o’)’;
w_h=w_h+0.7*(xr_i(:,i)*d_h’")’;

% test all pattern
r_o_test=1./(l+exp(-w_ox(1l./(l+exp(—w_hx*xr_1i)))));
d(sweep)=0.5*sum((r_o_test-r_d)."2);

end
plot (d)



Overfitting and underfitting

Underfitting Overfitting

Why does it happen?

(Figures are from Bishop, 1995)



Overfitting and underfitting

Underfitting Overfitting
Why does it happen?
Network is too simple Network 1s too complex
Training 1s too short Training 1s too long

(Figures are from Bishop, 1995)



Test error vs. Train error

Can you believe that the given training examples capture the true function?

Examples are always noisy. So though the error over training examples is low,
NN can fail to capture the true function.

Test set: Another set of data, which is differently sampled from a training set.
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Lower «——— Network Complexity———p Higher
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cf. Cross-validation (Figure is from Bishop, 1995)



How many hidden neurons are required?
(design algorithm)

A node creation algorithm

Start with a small network and

repeat adding nodes systematically

until required performance is
reached. (Fig 6.15)

1.

Dynamic node creation (Ash)
when error is not decreasing,
add a node

Meiosis network (Hanson)
when a weight varied too
much, split a node into two.

A pruning algorithm

%

E 7( > h
Start with a large network and
remove nodes systematically.

1. Weight decay
Weight are always decaying and too small
weight (not used to generate an output) is
considered ‘disconnected’

2. Optimal brain damage
If the activation of a neuron is too small
compared to others, the neuron is removed.



MLP: Advanced concepts
(radial basis functions and recurrent networks)



Radial Basis Function (RBF) network

In general, “localized” radial basis function. ex. Gaussian functions.
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If RBFs are well located, we can
capture a function with a small
number of RBFs and higher
accuracy.

What does their extents mean?
(their receptive fields)

How to locate centers?
(Self-organization or
unsupervised learning.)



Elman network

Remember a previous state. (A simplified version of recurrent network.)

1-to-1
Context Units ~ Connections
o Context units act as a memory
® (Just backup of hidden neurons, not a
o processing units)
®
® Hidden Layer
® \ .
: Co:r::;'zted : Output Layer
o \ o ®+—* Nom
L ./ Fully @ 1—* South
Inputs I ./ Connected [} » East
NNNNNNN —N Fully @ > West
SSSSSSS —S Connected —
EEEEEEE —E ? The output is based on the current
WWwwwww —Ww (sensory) inputs and context units.

Sequence of inputs coming.

(figure from http://www.fabioruini.eu/blog/2008/02/)



Full recurrent neural network
Can be learned through Back Propagation Through Time (Werbos, 1990)

2. Estimated

Remember a sequence of states : :
intention of actor

(part of the model, which uses BPTT)
BPTT

Target Activity
N Neuronal
) O O Recurrent Output Layer response

20 1

External Output Layer
(ol (o

Spikes/bin

Time
(Figure is from Rizzolatti et al.)

Continue estimation using the current
belief of the actor’s intention (the
previous network output)

Visual Input Layer Recurrent Input Layer

1. Actor’s current 3. What was the last
behavior estimated intention Mirror Neuron
of actor? Estimate other’s intention

(Bonauito, Rosta, & Arbib,2007)



Peceptrons (single layer)
- linearly separable
- error function, gradient descent

Multi-layer perceptrons
- back-propagation error signal
- overfitting and underfitting
- test and training data

- Radial Basis Functions
- EIman network (recurrent networks)
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