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Computational Neuroscience 

•  Simulation e.g. simulating single neurons or sets of 
neurons (population model, IF neurons) 

•  Modeling understanding the function of neural circuits. 

•  Analysis of brain connectivity using computational tools to 
analyze the structure of neural networks. This analysis can 
give insights about function and dynamics! 

•  Analysis of brain dynamics using computational tools to 
analyze experimental or in silico brain activity. This analysis 
can lead to improved models and simulations! 



Neural coding 

•  Rate coding features of an object are encoded through 
neural firing rate (e.g. orientation tuning). 

•  Population coding simultaneous firing of a population of 
neurons encodes for an object or feature of an object. 

•  Sequence coding the firing pattern of a neuron contains 
information about an object. 



Modeling brain processes 

Psychophysics 

Stimulus Response 

Neurophysiology 

Stimulus Response 



Processing steps 

  Stimulus 
                   Sensory encoding 
                                                     Signal 
                                                                                Decoding 
                                                                                                       Perception 



What the brain ‘sees’ 

Hmm… kimchi 



Information Theory 



Information Theory 

Claude E. Shannon (1948) A Mathematical Theory of Communication, 
Bell Sys. Tech. J. 27:379-423 



Information gain I 

Information unit [bit(s)] 

Information gain after receiving message x 

P(x): probability to receive message x (why minus?) 

Note: instead of log2 the notation ld (logarithmus digitalis) 
can also be used 



Examples: equal message probabilities 
Two messages with equal probability  

P(0) = 0.5       P(1) = 0.5 

    I(0) = I(1) = - log2 0.5 = 1 bit 

Three messages with equal probability  
P(0) = 1/3      P(1) = 1/3       P(2) = 1/3 

    I(0) = I(1) = I(2) = - log2 0.333 = 1.585 bits 



Information gain (general case) 
What if a message is uncertain? 

Example: previous knowledge for coin tossing: 
p(heads) = 0.5    (prior knowledge) 

message that heads occurs with 90% probability 
p(heads) = 0.9    (posterior knowledge after   

   message receipt) 

Pposterior: probability of message x after the message is sent 
Pprior: probability of message x before the message is sent 

(also called a priori probability) 



Average information gain: Entropy  

 Entropy is defined in terms of probabilistic 
behavior of a source of information  

  In information theory the source output are 
discrete random variables that have a certain 
fixed finite alphabet with certain probabilities  
– Entropy is the average information content for the 

given source symbol  



Entropy S  (or H) 
average information gain = 
sum of information gains weighted 
by their probability 

Note: Rare events have a huge impact on the entropy! That 
means, a large data set is needed for accurate values. For normal 
experiments with a small sample size, the entropy is 
underestimated as rare events are missing.  



Example 

  Entropy of a Coin toss relative to the probability of  showing heads. 
  Consider tossing a coin with known, not necessarily fair, probabilities 

of coming up heads or tails. 
  The entropy of the unknown result of the next toss of the coin is 

maximised if the coin is fair (that is, if heads and tails both have equal 
probability 1/2). This is the situation of maximum uncertainty as it is 
most difficult to predict the outcome of the next toss; the result of 
each toss of the coin delivers a full 1 bit of information. 



  However, if we know the coin is not fair, but comes up heads or tails 
with probabilities p and q, then there is less uncertainty. Every time, 
one side is more likely to come up than the other. The reduced 
uncertainty is quantified in a lower entropy: on average each toss of 
the coin delivers less than a full 1 bit of information. 

  The extreme case is that of a double-headed coin which never comes 
up tails. Then there is no uncertainty. The entropy is zero: each toss of 
the coin delivers no information. 



Mutual Information  

•  The mutual information of two random variables 
is a quantity that measures the mutual dependence 
of the two variables. The most common unit of 
measurement of mutual information is the bit, 
when logarithms to the base 2 are used.   

•  Mutual information is a useful concept to measure 
the amount of information shared between input 
and output of noisy channels.  

noise 

X Y 



Mutual Information  

•   Mutual information measures the information that X and Y 
share: it measures how much knowing one of these 
variables reduces our uncertainty about the other. For 
example, if X and Y are independent, then knowing X does 
not give any information about Y and vice versa, so their 
mutual information is zero.  

•  At the other extreme, if X and Y are identical then all 
information conveyed by X is shared with Y: knowing X 
determines the value of Y and vice versa. As a result, the 
mutual information is the same as the uncertainty 
contained in Y (or X) alone, namely the entropy of Y (or X: 
clearly if X and Y are identical they have equal entropy). 



Mutual information 

noise 

X Y 

Mutual information (or cross-entropy) =  
information gain by receiving message Y 
when a signal X was sent 

Imutual(X, Y) = S(X) + S(Y) – S(X, Y) 



Channel Capacity 

How much information can be transmitted? 
Depends on 
-  number of possible signal states 
-  amount of noise 

Signal to noise ratio (SNR) = 
variance of signal / variance of noise =  

Channel capacity as upper limit 



Side note: Efficient coding 
Use shorter messages for transmitting messages that are 

frequent or important. 

Example: time needed for articulating words (~word 
length) 

frequent: yes, no, a, the, and, or 

important: help, fire  



Huffman Coding Algorithm 
  Encoding algorithm 

  Order the symbols by decreasing probabilities 
  Starting from the bottom, assign 0 to the least probable 

symbol and 1 to the next least probable symbol 
  Combine the two least probable symbols into one 

composite symbol 
  Reorder the list with the composite symbol 
  Repeat Step 2 until only two symbols remain in the list 

  Huffman tree 
  Nodes: symbols or composite symbols 
  Branches: from each node, 0 defines one branch while 1 

defines the other 
  Decoding algorithm 

  Start at the root, follow the branches based on the bits 
received 

  When a leaf is reached, a symbol is decoded 

Root 

1 0 

0 1 

Leaves 

Node 



Huffman Coding Example 
Symbols 
     A 
     B 
     C 
     D 
     E 

Prob. 
 0.35 
 0.17 
 0.17 
 0.16 
 0.15 

1 
0 

Symbols 
     A 
     DE 
     B 
     C 

Prob. 
 0.35 
 0.31 
 0.17 
 0.17 

1 
0 

Symbols 
     A 
     BC 
     DE 

Prob. 
 0.35 
 0.34 
 0.31 

1 
0 

Symbols 
  BCDE 
     A 

Prob. 
 0.65 
 0.35 

1 
0 0 1 BC DE 

0 
1 B 

C 

0 
1 

D 

E 

1 0 
A BCDE 

Huffman Tree 
Huffman Codes 

A     0 
B     111 
C     110 
D     101 
E     100 

Average code-word length =  0.35 x 1 + 0.65 x 3 = 2.30 bits per symbol  



Examples for fast coding in 
neuroscience 
Anatomy: Fibres that transmit pain information have faster 

conduction velocities (better myelination or larger 
thickness for non-myelinated fibres) 

EEG: responses which are important are processed faster 
(snake vs. table). Attention can also help to speed up 
processing. 



Spike train analysis 



Spike train -> message 
Translation: Spike(s) or no spike for each time window 

Time resolution: width of time window Δt [ms] 

Time interval T 



How much information does one 
spike on average transmit? 

Low firing rate -> spikes are a 
rare event -> each spike 
carries a high entropy 

High firing rate -> spikes are 
more expected -> each spike 
carries a lower entropy 

Low time resolution  -> fewer 
patterns can be encoded -> 
less information/entropy 

-> low firing rate saves energy 
and increases entropy/spike 



Data transmission speed 

How many spikes are needed to encode information? 

Task: Detection of animals in a 
visual scene presented for 20 ms. 

EEG recordings with 15 human 
subjects. Recognition after only 
150 ms! 

(Thorpe et al., Nature, 1996) 



From spikes to perception 
(decoding stimulus features) 



Some statistics 

The probability that an event A happens under the condition 
that an event B happened before is denoted as the 
conditional probability P(A|B). 

Example: P(lung-cancer|smoker)=0.7 
P(lung-cancer|non-smoker)=0.1 

If two events do not influence each other (unconditional), the 
following equation holds: 
   P(A, B) = P(A) * P(B) 

otherwise   P(A, B) = P(A|B) * P(B) 



Encoding 

The probability of response r of a population of neurons 
given a stimulus s 

For a specific stimulus s, P(r|s) is maximum for the typical 
stimulus-dependent response r. 

Note: The response r may also occur in the absence of the 
stimulus 



Decoding 

The ‘reverse of encoding’ 
Probability that stimulus s was presented if response r occurred: 

The most likely stimulus for response r 

Can be calculated using the recording of the cells, P(r|s), with 
Bayes’s theorem: 



Decoding; maximum likelihood 

Maximizing P(s|r) is equivalent to maximizing P(r|s) 

Therefore the stimulus estimated by 

Is equal to the one estimated by maximum likelihood 



Example: Response tuning curves 

Guessing the feature from the response 
of one neuron (with tuning curve) is 
ambiguous 

But the feature can be extracted by 
looking at the response of two neurons 



Example: Population vector 

How to overcome wrong responses of few neurons?  
The use of populations… 

Individual neuron i:  
tuning curve with cosine fit;  
maximum activity ri at preferred direction si  

Population level:  
Population vector shows preferred direction: 



Representation 

Local    -  one stimulus is only represented by one cell 
(grandmother cell)  ~N 

Fully distributed – a stimulus is encoded by the combination 
of the activities of all neurons ~xN  

Sparse – only part of the neurons take part in identifying a 
stimulus (less wiring and firing than in fully distributed 
network) 



What is a feature? 

Complex stimuli comprise several features (e.g., color, 
direction, shape, figure-background contrast,…) 

The population response to the stimulus is then the 
combination of the responses to the different features. The 
population representation of the stimulus is a feature 
decomposition. 



How many neurons are needed to detect a stimulus? 

Stimulus 5:  
no stimulus 
(background firing) 



Summary 

The brain uses a short time to evaluate spike trains: 
-  timing is important 
-  population vectors reduce the effect of noise on 

single signals 
-  distributed (sparse) encoding has several 

advantages (many stimuli can be encoded, robust 
against loss of neurons). 



Trappenberg, 2010 
Appendix D (or chapter 5 in the first edition) 

Numerical Recipes (3rd edition, 2007) 
http://nr.com/     

Additional material: 
Dayan & Abbott, 2001 
Rieke, Bialek, Warland, 1999 
Shannon & Weaver, 1949 

Further readings 


