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Hierarchies
— Top-down vs. bottom-up
— Hierarchical maps

Interacting components

- attention and visual search
- global workspace model

Predictive Brain

- generative and recognition mode

- active learning

Adaptive Resonance Theory

Models and problems of Comp. neuroscience
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Hierarchical maps

A. Ventral visual pathway B. Layered cortical maps
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Attention in visual search and object recognition

Top-down Intention: want to see “the tower”

Visual search

Object recognition

Bottom-up
Environment: what am | seeing?

Gustavo Deco
Barcelona, Spain




Model by Gustavo Deco

Object specific bias affects where to
see through the system.

Top-down bias

Inhibitory . (Object specific) Top-down bias
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(Object recognition)

What PP
Spatial location

Locus attentional

-

Vi-Vv4
(Feature
extraction)

LGN?
Q Visual field D

Cf. Indeed, a spatial location for visual search is also based on the visual field: we
saw a part of scene in order of saliency. (Visual Attention: http://ilab.usc.edu/bu/

movie/index.html)



The size of the receptive fields of IT neurons depends
on the content of the visual field and the task
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Reaction time in visual search tasks:
activity of PP neurons

A. ‘Parallel search’ B. “Serial search’
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How much time is required to gaze a target object (E).

Gaze location is encoded in PP.

Environments affects reaction time also: the model behaves both



The interconnecting workspace hypothesis

Evaluative 5 Basic (essential) systems

sysiam

(for each function)
&
Global workspace

Attentional (to combine them)
sysem
(Focusing|

Lots of cortico-cortical
connections on Layer Il&lll
may contain the global
workspace network.

system

(PRESENT)

Stanislas Dehaene, M. Kergsberg, and J.P. Changeux, PNAS 1998



Stroop task

BLUE RED ORANGE
BLUE PURPLE RED

PURPLE YELLOW BLUE
ORANGE YELLOW RED

RED GREEN ORANGE
YELLOW ORANGE

Tell the color of word.

Is it easy to do?



An example of global workspace hypothesis:

GREY

What'’s the color of
the word?

Both “meaning” and
“color” is determined,
then workspace
neurons affect

selection among them. \/

A

Stroop task modeling
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An example of global workspace hypothesis:

GREY

In this model, the
correct answer is
given through
reward, and this

implies task purpose.

When the answer is
wrong, small reward
is given and
“vigilance” increases.
Which enable
reconfiguration of
workspace neurons
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1)

2)

3)

4)

5)

6)

The anticipating brain

The brain can develop a model of the world, which can be used to
anticipate or predict the environment.

The inverse of the model can be used to recognize causes by
evoking internal concepts.

Hierarchical representations are essential to capture the richness of
the world.

Internal concepts are learned through matching the brain's
hypotheses with input from the world.

An agent can learn actively by testing hypothesis through actions.

The temporal domain is an important degree of freedom.



(I) Probabilistic framework

Bayes Theorem
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Probabilistic framework

* Why probability?
— The world is uncertain!

— The sensory system is imperfect (noisy and
distorted).

— The motor system is highly uncertain (the world
can respond in a different manner with the same
action).

— The internal state can be wrong (can we sure what
we believe? ex. Visual illusion)
* |n the brain, there are “estimates” of the world
(through sensory inputs), and
“expectation” (based on the previous
experience).



Probabilistic framework

Higher-order internal
state (from previous

Environment Agent Arerleeise)
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(II) Recurrent networks with hidden nodes

The Boltzmann machine:

Hidden ' \ /\
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Probabilistic update: p(s/ = +1) = 1

1+exp(—p3 3_; wis)')
Boltzmann-Gibbs distribution: p(s'; w) = %Zmen exp(—psH")

Boltzmann machine may help that brain-generated (top-down) states can be
compared to physical evidence (bottom-up) state to guide self-organization
of useful representations.



Training Boltzmann machines

Kulbach-Leibler divergence

v
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Minimizing KL is equivalent to maximizing the average log-likelihood
function

Zp “)log p(s*; w) = (log p(s"; w)).

Gradient decent — Boltzmann Learning
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(I11) Adaptive resonance theory (ART)




An example of ART. OCR
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o After training nAcAA>iAsy characters, ART can capture less-

noisy characters in its memory.



The big picture

Summary of this module



Challenges of in silico models

Assumptions
— At what level should a system be modeled?

— Not all parameters can be measured from biological
systems. How can parameters be estimated?

— Are results robust?

Validation

- How can the simulation be compared with
the real biological system?
- Can there be a proof of correctness?

Insights

- What can the model tell us about the real biological
system? What are the limits?

- What do the results mean for clinical, industrial, or
experimental applications?



Summary of models

o A\
2 Predictive Brain
S (Boltzmann/Helmholtz)
o Connectome-based
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Summary

Hierarchies
— Top-down vs. bottom-up
— Hierarchical maps

Interacting components

- attention and visual search
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Models and problems of Comp. neuroscience
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