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Abstract—Complex networks from domains like Biology or
Sociology are present in many e-Science data sets. Dealing
with networks can often form a workflow bottleneck as
several related algorithms are computationally hard. One
example is detecting characteristic patterns or “network
motifs” – a problem involving subgraph mining and graph
isomorphism. This paper provides a review and runtime
comparison of current motif detection algorithms in the field.
We present the strategies and the corresponding algorithms
in pseudo-code yielding a framework for comparison. We
categorize the algorithms outlining the main differences
and advantages of each strategy. We finally implement all
strategies in a common platform to allow a fair and objective
efficiency comparison using a set of benchmark networks. We
hope to inform the choice of strategy and critically discuss
future improvements in motif detection.

Keywords-Network Motifs; Graph Mining; Algorithms;
Complex Networks

I. INTRODUCTION

Complex networks have recently gained the attention
of the research community due to the discovery that real-
world networks have non-trivial topological features [1]–
[5]. Applications of the concepts, models and techniques
developed have been applied in many different disci-
plines like sociology, biology, physics, mathematics and
computer science. This is because virtually almost every
natural structure can be represented as a network. From
this inherent interdisciplinarity there are many angles in
which one can approach the networks. After knowing how
to represent the structure that they want to study, scientists
have available a paraphernalia of different measures to
mine interesting characteristics and useful quantitative
data [6]–[8].

From the beginning, typical properties studied were
aggregated node measures intended to discover global
features, like the degree distribution, diameter, average
distance or clustering coefficient. However, this was not
enough to bridge the gap between structure and function,
and further study of more local and basic structures of
the networks was needed. The focus passed from sin-
gle and individual nodes to groups of nodes, forming
subnetworks. It was with this in mind that the term
“network motifs” first appeared [9]. Dubbed the “building
blocks” of complex networks, they mimicked the concept
of sequence motifs used in genomics, but extending it. In
a sequence, a motif is a recurring subsequence, a pattern,
that is conjectured to have some functional significance.

In a network, a motif is therefore a recurring subnetwork
conjectured to have some significance. In particular, it is a
recurring subnetwork that appears with a higher frequency
than it would be expected in similar random networks. A
more concise and formal definition is given in section III.
Note that this is substantially different from the problem
of discovering frequent subgraphs [10], [11] (also named
as motifs by some authors), which is normally applied
to groups of graphs (instead of single graphs), counts the
number of graphs in which a subgraph appears (but does
not count the number of occurrences in each graph) and
uses algorithmic techniques mostly based on the “a-priori”
principle [12].

The seminal paper by Milo et al. [9] gave origin to a
multitude of definitions and studies. Network motifs have
since been used in the most varied areas. The concept has
been applied to networks in domains like protein-protein
interaction (PPI) [13], gene transcriptional regulation [14],
[15], food webs [16], brain [17], electronic circuits [18]
and software [19]. It should however be said that network
motifs did not come without criticism [20]–[22]. We
do not try to advocate any position; instead we focus
our attention on studying efficient strategies for finding
network motifs.

Like many other subgraph problems (such as find-
ing maximal independent or bipartite sets), finding these
motifs is a computationally hard task, because funda-
mentally we will be matching graph patterns with the
desired motifs, which leads to the well known problem of
graph isomorphism, with no polynomial time algorithm
known [23]. As the size of the motifs increases, the
time needed to calculate them grows exponentially. Hence,
an exhaustive computation of all motifs of a network is
typically reduced to very small sizes in order to obtain
results in a reasonable amount of time. In this article,
we survey the state-of-the-art strategies that have been
proposed to find network motifs. Another survey [24]
shares similar goals although more restricted to motif
discovery in protein-protein networks. Our work differs
from it in many ways: (i) we give a more formal definition
of a network motif; (ii) we build a taxonomy for several
concepts used; (iii) we use this taxonomy to build a table
in which one can quickly identify the main differences
between the strategies currently used; (iv) we write the
main algorithms in pseudo-code thus enabling a clear
understanding of their inner works; and (v) we compare
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the main approaches in an integrated common framework
that gives us the ability to isolate external factors and
focus on the real practical differences between the various
strategies.

The remainder of the article is organized as follows.
In section II we introduce all needed terminology to
approach the network as a mathematical object. Section III
gives concrete informal and formal definitions for network
motifs. Section IV details the different strategies and
algorithms used for motif finding, giving pseudo-code and
a table that quickly identifies the main differences between
these methods. Section V compares the execution times
in an integrated common framework that isolates the real
differences between the different approaches. Section VI
concludes the paper.

II. NETWORK TERMINOLOGY

In order to have a well defined and coherent graph
terminology throughout the paper, this section reviews the
main concepts we will use. A network can be modeled
as a graph G composed by the set V (G) of vertices or
nodes and the set E(G) of edges or connections. The size
of a graph is the number of vertices and is written as
|V (G)|. A k-graph is a graph of size k. The neighborhood
N(u) of a vertex u ∈ V (G) is composed by the set of
vertices v ∈ V (G) : (u, v) ∈ E(G). All vertices are
assigned consecutive integer numbers starting from 0. The
comparison v < u means that the index of v is lower than
that of u.

A subgraph Gk of a graph G is a graph of size k in
which V (Gk)⊆V (G) and E(Gk)⊆E(G). This subgraph
is said to be induced when (u, v) ∈ E(Gk) ↔ (u, v) ∈
E(G). The neighborhood of a subgraph Gk is defined
as N(Gk) = {v ∈ N(u) : v /∈ V (Gk), u ∈ V (Gk)}.
The exclusive neighborhood of a vertex u relative to a
subgraph Gk is defined as Nexcl(u,Gk) = {v ∈ N(u) :
v /∈ V (Gk) ∪N(Gk)}.

A mapping of a graph is a bijection where each vertex
is assigned a value. Two graphs G and H are said to
be isomorphic, denoted as G∼H , if there is a one-to-
one mapping between the vertices of both graphs where
two vertices of G share an edge if and only if their
corresponding vertices in H also share an edge. The
set of isomorphisms of a graph into itself is called the
set of automorphisms and is denoted as Aut(G). Two
vertices are said to be equivalent when there exists some
automorphism that maps one vertex into the other. This
equivalence relation partitions the vertices of a graph G
into equivalence classes denoted as GE .

III. THE CONCEPT OF NETWORK MOTIFS

A. The original definition

Milo et al. [9] provided a basic informal definition for
“network motifs”:

Definition 1 (Network Motifs - informal definition):
Network motifs are patterns of inter-connections occurring
in complex networks in numbers that are significantly
higher than those in similar randomized networks.

For the sake of simplicity, from now on we will refer to
network motifs simply as motifs. The idea and motivation
behind this definition was that the detection of the motifs
could give new insight into their dynamical and functional
behaviour. A possible interpretation was that the motifs
appeared because of constraints in the way the network
was developed [25], thus being related to the evolution of
the whole complex system. Another possible use would
be to distinguish classes of networks based on types of
motifs found (this was done in [9], [26]), since it can be
universally applied to all kinds of networks.

The definition above means that a motif is a subnetwork
which is statistically over-represented. Next, we describe
how the informal definition was put to practice in Milo et
al. [9] supplementary material. The key aspect to ensure
statistical meaning is to be able to generate the random
networks as similar as possible to the original one. We
want to be sure that the intrinsic global and local properties
of the network do not determine the motif appearance
and that it is specific to this particular network. The
original proposal was therefore to maintain all single-node
properties, namely the in and out degrees. Besides that,
one should try to guarantee that when searching for k-
motifs, the frequency of (k−1)-motifs would be the same,
ensuring that the significance of a particular pattern does
not simply derive from its subpatterns.

A motif is classified as such when three things occur.
First, the probability that the number of times a motif
appears on randomized network is greater than the num-
ber of times it appears in the real network should be
smaller than a determined probability threshold P . This
is determined using an ensemble of a large number of
random networks as described before and will ensure that
the motif is over-represented on the original network. P
is estimated by assuming a random null hypothesis and
z-scores (on a standard normal distribution). Let foriginal

be the frequency in the original network and frandom be
the frequency in a random network. We can then define
the z-score as in equation 1 and use a pre-calculated table
to infer the desired probability.

z-score(Gk) =
foriginal − f̄random

std(frandom)
(1)

The second constraint is that foriginal should be higher
than an uniqueness threshold U . This ensures a quantita-
tive minimum to establish significance.

The third and last constraint is that foriginal is sig-
nificantly larger than f̄random in order to prevent the
detection of motifs that have a small difference between
these two values but have a narrow distribution in the
random networks (foriginal − f̄random > D × f̄random

was used). D is the proportional threshold that ensures
the minimum difference between foriginal and f̄random.

This leads us finally to a more formal version of motifs,
expressed in the following definition:

Definition 2 (Network Motifs - formal definition): An
induced subgraph GK of a graph G is called a network

81

Authorized licensed use limited to: Seoul National University. Downloaded on April 18,2010 at 16:39:57 UTC from IEEE Xplore.  Restrictions apply. 



motif when for a given set of parameters {P,U,D,N}
and a random ensemble of N similar networks:

1) Prob(f̄random(GK) > foriginal(GK))≤P
(Over-representation)

2) foriginal(GK)≥U
(Minimum frequency)

3) foriginal(GK)−f̄random(GK) > D×f̄random(GK)
(Minimum deviation)

Milo et al. [9] used {0.01, 4, 0.1, 1000} as the set of
parameters {P,U,D,N}, but other values can be used
depending on what we want to accomplish with the motifs.

B. Variations
All of the aforementioned conditions constitute the

original complete definition of motifs that is still probably
regarded as the canon. However, several variations were
introduced, varying different types of new details and
constraints.

The first point to note is that the concept is very broad. It
can be applied equally to directed or undirected networks
without changing its behavior and method of calculation.
One other possible application is to use the definition on
coloured networks, giving origin to coloured motifs [27],
[28].

A subtle variation is the notion of an anti-motif [26],
which is a significantly under-represented subnetwork and
may also be meaningful. Some authors take into account
subnetworks which are not induced [29], [30], meaning
that the total number of possible subnetworks will be much
larger. Other authors only consider maximal motifs [31],
which are motifs that do not contain as subgraphs other
motifs, thus diminishing the total number of motifs found.

Another important variation is related to how we de-
termine the frequency of a specific subgraph. Milo et
al. [9] allow arbitrary overlapping of edges and nodes
on different occurrences of a motif, which makes it the
canon definition. This is typical in biological applications,
since in these networks it is possible for several different
overlapping subgraphs to be active and functioning at
the same time, with the same motif assuming different
functions on each occurrence, as for example is the case
of proteins in PPI networks [24]. However, Schreiber et
al. [32] introduces different concepts for the frequency,
allowing more constraints, like no sharing of edges and
nodes. This has the potential to drastically change the
frequency of a motif, thus changing the tractability of the
motif discovery problem.

The notion of the statistic significance can have a
different formulation. Instead of using the z-score, some
authors also use the so called abundance (∆) [26], as
defined in equation 2 (ε is a very small constant to ensure
that when the frequency is small the abundance will not
be misleadingly large).

∆(GK) =
foriginal − f̄random

foriginal + f̄random + ε
(2)

Another approach is to sample some of the subgraphs
and then estimate the concentrations of the studied motifs

in the original network [33], as detailed in equation 3,
where the denominator indicates the sum of the frequen-
cies of all the k-subgraphs. Calculating the average and
standard deviation of the concentration on the random
ensemble of networks will then give an estimate on the
z-score.

C(GK) =
f(GK)∑
f(GK)

(3)

The generation of a random ensemble of similar net-
works is cumbersome and time consuming. Analytical
methods to derive the desired probability for a subgraph
to be over-represented would be most welcome and recent
work pursues this line of research [34]–[37]. These theo-
retical statistical approaches have an enourmous potential,
but they still require further development to reach the
accuracy needed for a practical application.

IV. STRATEGIES FOR MOTIFS DISCOVERY

A. Overview

We surveyed the most currently used sequential strate-
gies for motifs discovery, selecting those that rely on the
canon definition of motif and are the basis of almost
every motif application found in the literature. Table I
summarizes the main differences among the strategies on
a set of relevant distinguishable parameters.

Table I
CLASSIFICATION OF THE SELECTED STRATEGIES FOR NETWORK

MOTIFS DISCOVERY.

Method Bias Symmetry Network Public Motif
Breaking Centric Tool Size

MFinder [9], [33] yes no yes yes small
FanMod [35], [38] no yes yes yes medium

Grochow [39] yes yes no no large

Method indicates the name of the associated tool or the
author name when no production tool name is given. Bias
indicates whether the sampling method does not have a
uniform probability of selecting a subgraph. Symmetry
Breaking indicates if the method only finds once each
occurrence of the motif, avoiding redundant calculations
due to symmetry. Network Centric indicates whether the
method must be applied to the whole network and all
motifs or if it can be applied to a single specific motif.
Public Tool indicates whether the method has available
a production software tool, ready to be used by anyone
wishing to do so. Motif Size gives a very broad overview
of the size of the motifs that the respective algorithms can
process in a reasonable amount of time. We considered
small for subgraph sizes of around 4-7, medium for
6-9 and large for sizes >10.

B. The strategies

The main flow of all the strategies is basically the
same. To look for motifs of size k, first enumerate all
k-subgraphs of the original graph and then calculate a
subgraph census. This results in a histogram with the
frequency of the classes of isomorphic k-subgraphs. After
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that an ensemble of similar random networks is generated.
These random networks maintain the same global prop-
erties of the original graphs, namely the node degrees.
A subgraph census is performed on each of the random
networks. Finally, with all the gathered data, the statistical
significance of the motifs on the original network is
evaluated and the ones over-represented are reported.

Let us examine how the methods accomplish this flow
of execution. Figures 1 and 2 illustrate the MFinder and
FanMod algorithmic strategies for subgraph census. Both
use a recursive backtracking algorithm.

Require: Graph G and a positive integer k
Ensure: k-subgraphs census of graph G

1: for all (i, j) ∈ E(G) do
2: SEARCHSUBSET({i, j})

3: procedure SEARCHSUBSET(S)
4: if |S| = k then
5: if UNIQUE(S) then
6: INCREMENTCOUNT(subgraphId(S))
7: else
8: HASH.INSERT(S)
9: for all i ∈ S do

10: for all (i, k) ∈ E(G) do
11: if k /∈ S then
12: if HASH.NOTFOUND(S∪{k}) then
13: SEARCHSUBSET(S ∪ {k})

Figure 1. MFinder enumeration algorithm.

MFinder starts by choosing an edge (line 1) and
constructs the motif starting with its two constituent nodes
(line 2). Each time it adds a new node that has an edge
connected to the already partially constructed subgraph
(lines 9 to 13). Whenever the desired subgraph size is
achieved, the id of the corresponding isomorphism class
is calculated and its frequency is updated in an hash table
(line 6). To make the search more efficient, another hash
table is maintained (in fact, one different hash table for
each subgraph size smaller than k) to determine all sets
of vertices (subgraphs) already found. This is used to avoid
expanding again from a vertex set already explored (lines
8 and 12). Even with this, the same subgraph can be found
several times (due to symmetries) and a test is made to
certify that this is indeed a new uncounted motif (line
5). MFinder needs a lot of memory to maintain all the
subgraphs explored, which hinders its capabilities to deal
with large motifs.
FanMod appeared later and innovated precisely because

it was able to avoid symmetries and to find all subgraphs
exactly just once. Instead of starting with an edge, this
method starts with a single “root” node and expands
from there. Its core idea is that when expanding the set
of nodes, only the ones with an index greater than the
initial spawning node are allowed (lines 2 and 10). A list
of possible vertices for extension is maintained (lines 2
and 11) and each time a vertex is chosen for expansion
it is removed from the possible extensions (line 9) and

Require: Graph G and a positive integer k
Ensure: k-subgraphs census of graph G

1: for all v ∈ V (G) do
2: VExt ← {u ∈ N(v) : u > v}
3: EXTENDSUBGRAPH({v}, VExt, v)

4: procedure EXTENDSUBGRAPH(VSubg, VExt, v)
5: if |VSubg| = k then
6: INCREMENTCOUNT(canonicalLabeling(VSubg))
7: else
8: while VExt 6= ∅ do
9: remove random chosen w ∈ VExt

10: V ′new ← {u ∈ Nexcl(w, Vsubg) : u > v}
11: V ′ext ← Vext ∪ V ′new

12: EXTENDSUBGRAPH(Vsubg ∪ {w}, V ′ext, v)

Figure 2. FaMmod enumeration algorithm.

its exclusive neighbours are added to the new possible
extensions (line 10). The fact that they are exclusive
guarantees that each subgraph is enumerated exactly only
once, because the ones which are not exclusive will be
added on another instance of the recursion. Figure 3
exemplifies in detail how the algorithm enumerates all 3-
subgraphs of a graph with 5 vertices.

Figure 3. FanMod algorithm generates this recursive search tree for the
given graph. Each internal node indicates the sets passed as parameters
to the procedure extendSubgraph, respectively VSubg and VExt

(adapted from [35]).

Both algorithms also need to calculate isomorphism
(line 6 of figure 1 and line 6 of figure 2) and both
rely on finding a canonical form of the subgraph. While
MFinder uses its own customized algorithm which is not
well documented, FanMod uses a highly efficient third-
party algorithm (nauty [23]).

The problem with doing the complete census is that
the number of existing subgraphs grows exponentially as
we increase the size of the network or the size of the
subgraphs themselves. One way to cope with that growth
is to sacrifice accuracy, using a probabilistic approximation
algorithm: instead of fully enumerating all the subgraphs,
we can sample a determined number of k-subgraphs on
the original and on the random networks. We can then use
their concentration to obtain an approximated z-score and
therefore calculate an approximate significance, that will
be more accurate as we increase the number of samples.
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Figures 4 and 5 show how MFinder and FanMod ,
respectively, accomplish this.

Require: Graph G and positive integer k
Ensure: One sample k-subgraph

1: Pick random edge (i, j) ∈ E(k)
2: S ← {i, j}
3: while |S| 6= k do
4: Pick random v ∈ N(S) : v /∈ S
5: S ← S ∪ {v}
6: Calculate probability to sample S
7: return S

Figure 4. MFinder sampling algorithm.

To sample one subgraph, MFinder chooses a random
starting edge (line 1) and continues adding arbitrary new
vertices that are on the neighbourhood of the partially
constructed subgraph (lines 4 to 5) until the desired
subgraph size is achieved (line 3). The problem is that this
method is clearly biased because not all subgraphs have
the same probability of being sampled [33]. To account
for that, the sampling also calculates the probability P
of this graph being chosen and then assigns the sample a
weight of W = P−1. With all this, sampling is a matter
of calling the algorithm of figure 4 the desired number of
times.

Require: Graph G, pos. integer k and set of prob. Pd

Ensure: Uniformly sampled k-subgraphs
1: lines 1 to 2 of algorithm in figure 2
2: with probability P1

3: EXTENDSUBGRAPH({v}, VExt, v)
4: lines 4 to 11 of algorithm in figure 2
5: V ′Subg ← VSubg ∪ {w}
6: with probability P|V ′

Subg
|

7: EXTENDSUBGRAPH(V ′Subg, V
′
Ext, v)

Figure 5. FanMod sampling algorithm.

FanMod has a much more refined sampling algorithm.
It uses the same base algorithm to enumerate all k-
subgraphs but each recursive call is made only with a
certain probability Pd, associated to the depth of the
enumeration. Since each subgraph appears once and only
once in the search subtree, all the subgraphs have the exact
same probability of being called. More than that, we know
that all subgraphs samples are different from each other,
while in MFinder there is no such guarantee. On the
other hand, we cannot exactly generate a fixed number
of samples. Since we are dealing with probabilities, we
can only choose the values of Pd in order to have an
approximated number of sampled subgraphs: if we want
to have a fraction 0 < q < 1 of the subgraphs samples,
then we must guarantee that

∏
Pd = q. This still leaves

the open question of how to choose the individual Pd

values. The general rule is to have larger values for small
d, since if we discard an entire search subtree near the
root, many subgraphs will not have the possibility to be
sampled. However, it must be noted that the larger these

values are, then the more time the sampling will take, since
we will have to branch into more subtrees.
Grochow takes a very different approach. While the

other methods are network-centric in the sense that they
discover motifs for the whole network, Grochow concen-
trates on counting the frequency of a specific isomorphic
class. Figure 6 describes how it counts the number of
occurrences of a single query graph.

Require: G, k and a query graph H
Ensure: All instances of H in G

1: HE ← EQUIVALENCEREPRESENTATIVES(H)
2: C ← SYMMETRYBREAKINGCONDITIONS(H)
3: Sort g ∈ V (G) by increasing degree and then by

increasing neighbour degree sequence
4: for all g ∈ V (G) do
5: for all h ∈ HE do
6: if SUPPORTS(g, h) then
7: f ← partial map associating f(h) = g
8: ISOMORPHICEXTENSIONS(f,H,G,C)
9: Remove g from G.

10: procedure ISOMORPHICEXTENSIONS(f,H,G,C)
11: D ← domain of f
12: if D = H then
13: FOUNDOCCURRENCE(f)
14: m← most constrained neighbour of any d ∈ D
15: for all n ∈ N(f(D)), with d ∈ D do
16: if f(m) = n does not violate C then
17: if 6 ∃d ∈ N(m) : n /∈ N(f(d)) then
18: if 6 ∃d /∈ N(m) : n ∈ N(f(d)) then
19: f ′ = fonD and f ′(m) = n
20: ISOMORPHICEXTENSIONS(f ′, H, G, C)

Figure 6. Grochow single query subgraph algorithm.

The main idea is to progressively map the desired
query subgraph H on the global graph G, instead of
enumerating, and only after check for isomorphism. The
algorithm starts by finding the equivalence classes of
the query graph (line 1), in order to start the mapping
in only one representative of each class, thus avoiding
unnecessary and redundant searches. Then a series of
symmetry conditions are found (line 2). The idea is to
avoid symmetries by adding restrictions on the labelling of
the vertices. This is done by going trough all equivalence
classes and then imposing the condition that the label of
one of its vertices is smaller than the minimum label of the
others. Describing this procedure in more detail is beyond
the scope of the this paper (more can be seen on [39]),
but we should note that in terms of computational cost it
consists on successive calculations of the automorphisms
of the graph. Figure 7 gives an example of the conditions
found in a graph with 6 vertices.

After doing all of this, the algorithm starts by trying
to match every vertex g of the graph G into one of the
vertices h representing each equivalence class of the query
graph (lines 4 and 5). The vertices g are searched in
order of their degree (line 3) to impose more constraints
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Figure 7. Finding symmetry conditions on a graph with 6 vertices.
Vertices in white are fixed by any automorphism preserving the indicated
conditions. Other vertices are coloured accordingly to their equivalence
class (adapted from [39]) .

on the possible candidates. When one of the h vertices
is a suitable candidate (line 6), that is, a possible match
in what regards to its degree and neighbour degrees, the
algorithm continues recursively mapping more vertices to
see if the whole query graph can be mapped (line 8). In
order to do this, the most constrained neighbour of g is
tried (line 14), that is, the one with theoretically fewest
possible candidates. If a candidate node does not violate
the already calculated symmetry conditions and does not
induce a contradictory neighbourhood (lines 16 to 18) then
we add it to the mapping (line 19) and continue recursively
(line 20) until the whole query graph is found (line 13).
When we reach this stage, we have already addressed the
isomorphism problem and we know that the subgraphs
found correspond to the query subgraph.

In order to do an exhaustive census, Grochow uses
McKay’s gtools package [40] to generate all possible
subgraphs of a determined size and then runs the single
query search to determine their frequency. Other uses of
this algorithm include a direct computation of whether
a specific subgraph is a motif. This subgraph can be a
larger than normal randomly sampled subgraph, which
would have a prohibitive computational cost with the other
methods.

One aspect remains to be explained, regarding the
generation of similar random networks. The standard
procedure is to use a Markov-Chain method. Starting with
the original graph, a pair of edges a→b, c→d is repeatedly
swapped by a→d, b→c in order to preserve vertex in
and out degree. This is done until we achieve the desired
degree of randomness. Another approach not so common
is to directly generate the random network from scratch,
which Milo et al. [9] adapted from Newman et al. [41].
Starting with an empty graph, we repeatedly add random
connections with probabilities related to the number of
connections that still must be made on each vertex. This
continues until all vertices have the desired number of
connections.

V. COMPARISON IN AN INTEGRATED FRAMEWORK

In order to compare the efficiency of the described
algorithms we implemented them in a common framework
using C++. We used the same underlying graph data
structures and methods, the same isomorphism detection
routines (nauty) and the same random subgraph gener-
ators. This ensures that the observed differences in the
execution times of the implementations are due to the
differences in the algorithms.

All tests were made on computers with an Intel Core
2 Duo T7500 processor at 2.2GHz and 2Gb of memory.
All results obtained with MFinder and FanMod were
double checked with the results obtained by using the
publicly available tools with the same parameters to see
if they produced equivalent results. In order to evaluate in
different domains we used three different representative
networks, summarized in Table II. Circuit and Yeast
are directed graphs that were used as benchmarks in [9]
for testing the original implementation of network motifs.
Social is an artificial undirected graph used as a bench-
mark for community detection algorithms [42] and it was
created with default parameters.

Table II
NETWORKS USED FOR EXPERIMENTAL TESTING OF THE

ALGORITHMS.

Network NrNodes NrEdges Short Description
Circuit 252 399 Electronic Circuit

Yeast 688 1079 Transcriptional network
of Saccharomyces cerevisiae

Social 1000 15541 Social Network with
heterogeneous communities

We run and compare the algorithms in full enumeration
mode (no sampling). When computing network motifs, the
number of random subgraphs generated has a dramatic
impact on the time spent, since we have to do the census
in all of the N random networks. What really matters is the
time t to do a full census on one graph (the time spent
on the generation of the random networks is negligible
when compared to the time the census takes). The total
time spent will be roughly equal to (N + 1)× t. Table III
shows the time taken on average for one census of that
size, calculated by applying an exhaustive census on the
original graph. We do not show execution times greater
then 4 hours.

Besides using the three main algorithms as they were
imagined, we also consider two simple variations. If
the graph is undirected, when applying Grochow we
experiment to only generate and count all undirected
subgraphs, which are much less than directed counterparts
(for example, there are 1,530,843 different classes of
isomorphic direct subgraphs with size 6 and only 112
when we consider just undirected connections). We call
this approach Grochow Undir. We also experiment in
applying Grochow only to the graphs that appear in
the original subgraph previously found with the other
enumeration method. We can only use this approach to
count the occurrences in the random ensemble of networks
after applying other method on the original network. Since
there can be hundreds of random networks, the time for
computing their respective census would dominate the
time needed for the original network census. Note also
that we would lose information like possible anti-motifs,
but all possible motifs would be accounted for. We call
this variation Grochow Existent and only show the
time the census would take after we already know which
subgraphs we need to count.
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Table III
EXECUTION TIMES (IN SECONDS) OF AN EXHAUSTIVE CENSUS ON

THE ORIGINAL GRAPH. k INDICATES THE MOTIF SIZE. MEM INDICATES
THAT AS IT IS THE METHOD WOULD NEED TOO MUCH MEMORY. N/A

MEANS THAT THE METHOD IS NOT AVAILABLE FOR THAT GRAPH.

MFinder FanMod Grochow Grochow Grochow
Undir Existent

Circuit
k = 4 0.10 0.05 0.36 N/A 0.03
k = 5 0.36 0.14 15.79 N/A 0.15
k = 6 2.45 0.67 2519.3 N/A 0.81
k = 7 17.54 4.34 >4h N/A 5.09
k = 8 130.66 27.49 >4h N/A 33.83
k = 9 MEM 140.66 >4h N/A 253.65
Yeast
k = 4 2.42 0.77 2.25 N/A 0.55
k = 5 55.67 15.21 107.82 N/A 5.24
k = 6 MEM 260.38 >4h N/A 70.91
k = 7 MEM 5023.91 >4h N/A 1267.63
Social
k = 4 40.44 11.22 16.98 1.48 1.45
k = 5 MEM 281.40 1122.74 33.30 30.50
k = 6 MEM 7951.47 >4h 888.75 872.30

As expected MFinder is slower than FanMod on
all networks and sizes. More than that, it really uses
large amounts of memory in order to hash all partial
subgraphs found which quickly hinders its scalability to
larger sizes. Even if we had implemented specialized
compact notations for the subgraphs, thus handling one
more unit of k, the growth of needed memory would still
be exponential. Grochow is also very slow on its own,
mostly due to the fact that it needs to consider all possible
directed subgraphs of the motif size, thus meaning that
a really huge number of different subgraphs that do not
appear at all are considered. However, in the case of the
only undirected network (Social), Grochow Undir
manages to lower the number of different subgraphs and
obtains results even better than FanMod, showcasing the
efficiency of the method in terms of querying single
subgraphs. When we know beforehand which subgraphs
we must count, the behaviour is even better and Grochow
Existent improves over FanMod on the time spent
on the census. Note however that on small and not too
dense networks (like Circuit) FanMod still has the
upper-hand, but as we go to larger networks (Yeast
and Social) Grochow Existent is several orders of
magnitude faster.

VI. CONCLUSION

Complex networks are everywhere and as such are an
important part of many e-Science data sets. There are
many ways to analyze this type of data. One of them
is to use network motifs, which we clearly defined, both
informally and formally. We studied the state-of-art in
strategies for finding network motifs and showcased them
in a quick overview table that summarizes the main differ-
ent and common properties that characterize the method.
We also gave a detailed description of how these network
motif discovery algorithms work, including pseudo-code
describing their control flow.

We implemented the selected strategies on a common
platform that allowed us to isolate external factors and
compare execution times in order to understand which

algorithm excels in what. When we need to enumerate
and consider all subgraphs, FanMod is the strategy to
follow, unless we have small motif sizes and undirected
subgraphs, in which case Grochow can be the better
option. If we are trying to find if a relatively small set
of specific subgraphs is a motif, then Grochow is also
the better option. Given this, an approach worth of further
exploration is to initially use FanMod to enumerate all
subgraphs of the original network, and then use Grochow
to count the occurrences on the random ensemble of
random networks. This would merge the positive aspects
of both methods.

Adapting these algorithms for parallel execution is still
an open research path that we intend to pursue. This is an
area still in its early development stages but that could be
of great benefit for e-Science applications.
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