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Summary

Almost all real-world networks are distributed in space. In many of these networks,
more short- than long-distance connections exist. Thus, there is a preference to
minimize the length of connections. Such networks often exhibit properties of
small-world, scale-free or multi-clustered networks. However, previous models for
development, where only distance between nodes is considered when establishing
a connection, were unable to yield spatial graphs with these properties.

I present a new model for spatial graph development that can generate small-
world networks. Notably, also scale-free networks (similar to the German highway
system or the yeast protein-protein interaction network) can be generated with-
out using preferential attachment. The final topology of the network depended on
whether the growing network reached spatial limits during development or not.
Furthermore, different models for network evolution (limited, unlimited and pref-
erential attachment) could be distinguished by observing the change of density
and clustering coefficient over time.

Spatial growth was able to yield networks similar to real-world spatial networks.
As a case study, I generated networks similar to cortical networks. I found that
not only global network properties but also wiring properties were similar. In
addition, multiple clusters could be generated by introducing time windows.
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1 Introduction

Spatial networks are graphs that consist of nodes arranged in metric (usually 2D)
space (Watts, 1999). However, the concept of space could be extended to non-
metric space. A typical example are transportation networks where cities are the
nodes with a two-dimensional position on the map and highways are connections
between the nodes. In theoretical studies, spatial graphs are usually generated
by distributing the nodes randomly in space. After the nodes are arranged, edges
between the nodes are added to the network either randomly or depending on the
distance between the nodes.

These models, however, fail to reproduce many features of real-world networks.
One such feature is that of a small-world network (Watts and Strogatz, 1998) in
which many connections between neighbors of a node exist but characteristic path
length, that means the number of edges that have to be crossed to go from one
node to another, is as short as that of a randomly connected network. Neigh-
borhood connectivity is usually assessed by the clustering coefficient which is the
average percentage of connections between neighbors of a node (Watts and Stro-
gatz, 1998). Small-world properties were found in many biological and artificial
networks, including networks extending in space such as the Internet, power grids,
neural networks, and food webs (Watts and Strogatz, 1998). Another property
is that of having multiple clusters, that means that nodes as well as connections
between nodes are not distributed equally among space but concentrated on cer-
tain regions. Thus, there exist multiple clusters in the network. For example, in
the yeast protein-protein interaction network there are relatively more interactions
within the mitochondrium than between mitochondrium and other cellular com-
partments (Schwikowski et al., 2000). Another property of real-world networks is
that highly-connected nodes or hubs exist in the network which would not occur
when a random distribution of connections is assumed. The degree distribution of
these real-world networks, where degree is the number of edges that a node has,
follows a power-law where the probability for a node having degree k is P (k) ∝ k−γ

(Barabási and Albert, 1999).
I will describe a spatial growth model that can explain features of real-world

networks such as scale-free degree distribution, small-world properties, optimal
component placement and multiple clusters. The report consists of the following
parts. First, I will give examples for spatial graphs and their properties. Next,
I will give an overview of different models for network development or evolution.
Then, I will give general properties of our model and will — as a case study for
real-world networks — describe how brain-like networks can be generated. Finally,
I will discuss applications and limits of spatial growth.

1.1 Internet

One spatial network with well-documented topology is the network of networks —
the Internet. The Internet can be analyzed both on the router and the autonomous
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systems (AS) level. Whereas routers are the basic units redirecting packages, AS’s
as independent subnetworks can be identified at a global scale (Tanenbaum, 2003).
Recently, a combination of spatial constraints (Waxman, 1988) and preferential
attachment (Barabási and Albert, 1999) has been shown to yield a topology similar
to the Internet (AS level) (Yook et al., 2002). However, all nodes were existing
before the start of establishing connections thereby not modeling simultaneous
growth of nodes and edges. In this study I analyze a reconstruction of the AS
network based on snapshots from December 1997, December 1998, and December
1999 (Data from the Measurement and Network Analysis Group; http://moat.
nlanr.net/AS/). The data consisted of 6,524 AS and 29,629 connections between
them. The connection density was 0.07% with a higher neighborhood connectivity
(clustering coefficient 67%).

1.2 Traffic networks

Cities and roads between them are geographically distributed. It was shown
recently that the German highway network has a scale-free topology (Kaiser
and Hilgetag, 2004b) 1. The data of location nodes and connections was pro-
cessed from the ”Autobahn Informations System” (AIS), as accessible under http:
//www.bast.de (data as of 18 July 2002). Only roads defined as highways were
included in the analysis. Multiple highway exits for the same city (e.g., Hagen-
West and Hagen-Nord) were merged to one location representing the whole city
as a node of the network. Due to the merging process and highways currently
under construction, eight percent of the nodes were separated from the largest
cluster and were excluded from analysis. The resulting network consisted of 1,168
highway exits or locations and 2,486 highway connections between them (Fig. 1).
As for the Internet, the density of 0.18% is very low. Because of linear chains of
nodes, i.e. sequences of nodes that have only connections to successors or prede-
cessors in the chain, the clustering coefficient (0.12%) is lower than the density.
In addition, the maximum degree of a node (12 highways) is very low so that no
highly-connected nodes exist in the system. A similar type of organization was
also found for scale-free protein-protein interaction networks (Jeong et al., 2001)
(maximum degree kmax ≈ 20). Therefore I term these networks with linear chains
of nodes and scale-free but hub-less degree distribution linear scale-free networks.

1.3 Brain Connectivity Networks

As most other biological systems, the brain also is a spatial network. I analyzed the
network not on the level of single neurons but on the level of large-scale structural
modules (cytoarchitectonically defined areas). The analyzed connectivity networks

1In our study nodes are defined as highway exits. In other studies (Gastner & Newman,
cond-mat/0407680) only highway junctions and state borders were defined as nodes. This could
explain why these networks did not show a scale-free degree distribution.
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Figure 1: German highway (Autobahn) system. a, Positions were yielded by the
free Kamada-Kawai energy minimization (Pajek software package). Linear chains
of nodes can be clearly seen in the periphery of the visualization. b, Cumulative
degree distribution (kmax = 12).

of the cat and the macaque monkey consist of brain areas or regions as nodes and
the connections between the nodes as edges. In contrast to the previous networks,
the brain connectivity networks were very dense (15% density for the macaque
with 73 areas and 30% for the cat with 55 areas). The network showed properties
of small-world networks, in that the clustering coefficient (Watts and Strogatz,
1998) was higher and the average shortest path (ASP) length comparable to similar
random networks.
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Figure 2: Schematic drawing of the macaque cortical network with 95 areas. Areas
are positioned at the center of the surface region that belongs to each cortical area.
Lines represent known connections between cortical areas.

In addition to connectivity networks used in previous studies (Young, 1993;
Hilgetag et al., 2000), I analyzed a connectivity network together with the corre-
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sponding positions of the cortical areas (Kaiser and Hilgetag, 2004a). Connectivity
among cortical areas was obtained from three studies (Felleman and van Essen,
1991; Carmichael and Price, 1994; Lewis and Van Essen, 2000), for which data
was available in the CoCoMac-database (http://www.cocomac.org). Average
spatial positions of cortical areas were estimated based on surface coloring using
the CARET software (van Essen Lab, http://brainmap.wustl.edu/caret). The
length of connections was approximated as the direct Euclidean distance between
the geometric centers of two connected areas. The resulting network consisted of
95 cortical regions and 2,402 connections (Fig. 2).

1.4 Biochemical Networks

I analyzed metabolic and protein-protein interaction networks. Whereas the edge
density was only 1% in these systems, the clustering coefficient was 60% and 70%,
respectively. I used data from metabolic networks of 43 organisms where the nodes
were metabolites and the edges were transitions or reactions (data from http:

//www.nd.edu/∼networks/database/). The protein-protein interaction network
of yeast (S. cerevisiae), on the other hand, consisted of proteins and interactions
between them identified by yeast two-hybrid analysis (Schwikowski et al., 2000;
Ito et al., 2001). I analyzed the largest connected component consisting of 1,846
proteins and 4,406 interactions.

2 Methods for Network Growth

2.1 Distance independent growth models

2.1.1 Growth and preferential attachment

The standard model for generating scale-free networks uses growth and preferential
attachment (Barabási and Albert, 1999). Starting with m0 initial nodes, a new
node establishes a connection with an existing node i with the probability

Pi =
ki∑
k

that is, the number of edges of node i (ki) divided by the total number of edges
yet established in the network. The resulting network consists of one cluster, and
the degree distribution shows a power-law.

2.1.2 Hierarchical model

In order to develop modular scale-free networks, the hierarchical model for network
generation has been developed (Barabási et al., 2001; Ravasz et al., 2002). Starting
with one root node, for each step two units that are identical to the network
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generated in the previous iteration, are added and the bottom nodes of these two
units are linked with the root of the network.

In contrast to real-world networks, the modules are generated in a deterministic
way. This also means that the module hierarchy is strongly self-similar, leaving
no space for a variety of module sizes within the same network. However, for
metabolic networks it is argued that the replacement of a unit by the whole net-
work, thereby increasing the previously existing topology, could be the result of
copying and reusing existing modules and motifs (Ravasz et al., 2002).

2.2 Distance dependent growth

2.2.1 Preference for short-distance connections

Waxman (1988) proposed a connection establishment algorithm for the Internet
in which the probability of a connection between two nodes decays exponentially
with the spatial distance between them. In that way, the high costs for the wiring
and maintenance of long-range connections can be represented.

Initially, the nodes are distributed at random. Thereafter, edges are attached
to the graph. The probability that an edge is established between two nodes u
and v is

P (u, v) = β e
−d(u,v)

L α

where L is the maximum distance between two nodes, α is a factor for the distance
importance (a higher value results in fewer long-range connections), and β is a
scaling factor. The probability decays exponentially with the distance d(u, v)
between the nodes. In contrast to the other models, the location of the nodes is
determined from the start, therefore, there was no growth in terms of the size of
the network or number of nodes.

Diffusion as a reason for distance dependence in biological systems

Why should short-distance connections be more likely than long-distance connec-
tions? One explanation is that the concentration from the place of the production
/ emission of a growth factor to a distant location is decreasing. The process of
diffusion building up a gradient towards the source of a molecule is dependent on
the molecular mass of the molecule, the viscosity of the fluid, and the temperature.
Looking at a system where a certain concentration of molecules is deposited at
position x = 0 for the starting time t = 0s the concentration at position x after
time t is given by

c(x, t) =
Q

2
√

π D t
e
−x2

4 D t

where D is the diffusion coefficient and Q is initial amount of particles per area
(Murray, 1990, p. 235).
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2.3 Spatial growth model

The diffusion model is particularly plausible for biological networks, as the con-
centration of growth and signaling factors decays exponentially from the point of
origin in the cell or the brain. Therefore, the probability for establishing a con-
nection with a certain brain area or to interact with a certain protein will decrease
with spatial distance to the growth factor source or the protein, respectively. In the
spatial growth model nodes are generated step by step, and whenever a new node
is added to the network, its connections to the existing network are established.

This method can take borders or limits of development into account. The
generation of new cortical regions is limited within the skull. In addition, apoptosis
factors limit the generation of neurons so that growth beyond the limits of the skull
does not occur. In that way new nodes cannot be formed at the borders of the
network, that is, distant from the existing network. As new nodes can only be
generated within the limits of the existing network, the core of the network is
increasing its connection density.

At each step a new node was added at a randomly chosen position. There-
after, for all existing nodes the probability for establishing an edge between the
new node u and an existing node v was

P (u, v) = β e−α d(u,v)

where β is a scaling factor and α controls the probability for establishing long-
range connections. New nodes that did not establish connections with existing
nodes were removed from the network. The procedure was repeated until the
desired number of nodes was reached.

I only used the normal exponential decay. The distance between two nodes
could be less than one. Therefore, using the square of the distance would yield a
relatively higher probability for near nodes contradicting exponential decay.

As the initial spatial distribution of nodes would have been an additional pa-
rameter for network growth, I started network generation with one defined initial
node at the center of the network space. In that way the initial distances to the
border for the growing network were identical for all trials.

3 Results

3.1 General properties of spatial growth networks

3.1.1 Parameter domains for different network types

For very small β (< 0.01), sparse networks were generated (Fig. 3a) in which only
a small proportion of all possible edges was established. The resulting networks
were highly linear, that is, exhibiting one-dimensional chains of nodes, independent
of limited or virtually unlimited growth (parameter α). The histograms of chain-
lengths found in these networks, indicating the number of nodes in the chains,
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Figure 3: a, Sparse network (density 0.42%) with 500 nodes obtained by limited
growth (α = 2, β = 0.001). b, Double-logarithmic plot of the cumulative degree
probability P (k) that a node possesses k edges for the network shown in a. The
plot is based on uniform bins of data. A power-law of the degree distribution
(γ = 2.43) can be observed.

were similar to those of random networks with the same density. Unlike in random
networks, however, the clustering coefficient was lower than the network density,
and despite lacking clusters and hubs with large degree k, these networks possessed
a power-law degree distribution, with high ASP (Fig. 3b, to avoid systematic
errors known to occur for linearly histogrammed data plotted on logarithmic scales,
the plot uses data bins of uniform width). The power-law exponent was small, in
the range of [1.7; 2.1]; and in the simulated networks of 100 nodes the cut-off for
the maximum degree of the scale-free networks was 16. Given their low maximum
degree, these networks with low clustering and long linear chains of nodes were
called linear scale-free.

For higher edge probability (β → 1), a noteworthy difference between limited
and virtually unlimited growth became apparent. While it was impossible to
generate high network density under virtually unlimited growth conditions, the
introduction of spatial limits resulted in high density and clustering, as well as low
ASP. This was due to the fact that, in the virtually unlimited case, new nodes at
the borders of the existing network were surrounded by fewer nodes and therefore
formed fewer edges than central nodes within the network. In the limited case,
however, the network occupied the whole area of accessible positions. Therefore,
new nodes could only be established within a region already dense with nodes and
would form many connections.

Figure 4 shows the relation between small-world graph properties and growth
parameters α and β for networks consisting of 100 nodes. The ratio of the clus-
tering coefficient in spatial growth compared to random networks was larger than
one (indicating small world graphs), if the values for α and β were high (Fig. 4a).
The ASP in the generated networks normalized by the ASP in random networks
with similar density was similar for low values of α and high values of β. For
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Figure 4: Comparison of small-world properties of spatial and random networks
for N=100 nodes. Each data point represents the average for 50 networks. a, Ratio
of the clustering coefficient C of the generated networks divided by the clustering
coefficient for comparable random networks. A large ratio is one feature of small-
world networks. b, Ratio of the average-shortest paths, ASP, of spatial-growth
and comparable random networks.

these networks the likelihood of edge formation was high and — because of the
low value of α — independent from spatial distance. Such networks resembled
random growth, with the clustering coefficient possessing the same value as the
density (C/Crandom ≈ 1).

In a small interval of intermediate values for α (α ≈ 4, β = 1), networks
exhibited properties of small-world networks (ASP and clustering coefficient shown
in Fig. 5a). Here, the ASP was comparable to that in random networks of the
same size (λ ≈ λrandom), while the clustering coefficient was 39% higher than in
random networks (Watts, 1999, p. 114). An overview of the parameter space and
the resulting random, small-world, virtually unlimited or linear scale-free networks
is given in Figure 5b.

In contrast to limited growth, virtually unlimited growth simulations with high
β resulted in inhomogeneous networks with dense cores and sparser periphery. It
is difficult to imagine realistic examples for strictly unlimited development, as
all spatial networks eventually face internal or external constraints that confine
growth, may it be geographical borders or limits of their energetic and material
resources. However, virtually unlimited growth may be a good approximation for
the early development of networks before reaching borders.

I tried an alternative approach for generating scale-free networks. The idea was
to increase the probability that new nodes settle in dense areas inside the network
rather than at positions where only few nodes existed. Therefore, a node only
survived if it established more connections than the average connectivity. A node
inside a cluster had more links than a node at more sparse locations of the network.
Consequently, its probability to survive was higher. The resulting network covered
a smaller area of the network space, as it was more likely that nodes survived at the
core of the network rather than at it’s borders (Fig. 6). The density was increased
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Figure 5: Exploration of model parameter space. a, For dense networks (β = 1,
N = 100 nodes), an increased dependence of edge formation on distance (pa-
rameter α) led to an increase of ASP (diamonds) and a decrease in clustering
coefficient C (triangles). b, Overview of network types for different spatial growth
parameters (N = 100 nodes). Low values of α made edge formation independent
from distance and resulted in random networks. For large values of α only nodes
near the existing network could establish connections, and the hard borders were
not reached (virtually unlimited). The area labeled linear scale-free was a region
in which networks were sparse and highly linear and showed a scale-free degree
distribution. Only a small part of the parameter space displayed properties of
small-world networks.
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and the ASP for the unlimited case is now similar to the limited case. However,
no hubs occurred and no scale-free degree distribution could be generated. As new
nodes inside clusters had the same probability to establish links with peripheral
as well as central nodes, the increase in connectivity did not favor a small number
of nodes and did not result in hub formation.

Figure 6: Preferential crowding condition for limited growth. The core of the
network has a higher node density. However, no power-law degree distribution
was found.

3.1.2 Distinguishing Types of Network Development

Different network growth types can be distinguished by assessing the evolution of
network density and clustering coefficient. Growth with preferential attachment
as well as spatial growth lead to clustering coefficients, C(N), that depend on the
current size of the network, that is, the number of nodes, N (Fig. 7a). While C(N)
decreases with network size for networks generated by the BA-Model (Barabási and
Albert, 1999), it remains constant for spatial-growth networks. Virtually unlimited
or limited spatial growth can thus be distinguished, since density decreases with
network size for unlimited growth, while remaining constant for limited growth
(Fig. 7b).

Example: Evolution of metabolic networks. I applied this concept to
classifying the development of real-world biological networks. The evolution of
metabolic systems, for instance, can be seen as an incorporation of new substances
and their metabolic interactions into an existing reaction network. Reviewing
43 metabolic networks in species of different organizational level (Jeong et al.,
2000), the clustering coefficient of these systems remained constant across the
scale (Ravasz et al., 2002), whereas their density (Fig. 7c) decreased with network
size. This indicated features of virtually unlimited network growth. The relation
between the number of links and nodes in these systems was linear (Fig. 7d),
with a slope of 5.2, so that the number of interactions of a metabolite was not
increasing with network size. Such linear growth may ensure that the metabolic
systems remain connected (with the number of reactions larger than substances,
as a necessary condition for connectedness), while not becoming too complex too
quickly (as, for instance, with exponential addition of new reactions).
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Figure 7: Comparison of the dependence of clustering coefficient C(N) and density
on network size (number of nodes, N). a, For the simulated networks the clustering
coefficient remained constant for limited (triangles, α = 5, β = 1) and virtually
unlimited (boxes, α = 200, β = 1) spatial growth, but decreased for growth with
preferential attachment (diamonds). b, Density was independent of network size
only for limited spatial growth. c, Density depending on network size (N) for
the metabolic networks of 43 different organisms (15). d, A critical measure for
network development was the dependence of network size on the number of links.
For metabolic networks, this relationship was strongly linear.
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Example: Evolution of the Internet. The development of the Internet
was considered at the autonomous system (AS) level, that is, for independent
sub-networks. Over the years, the number of autonomous systems has been in-
creasing. Whereas the clustering coefficient did not shrink and even seemed to
increase, the density has been decreasing with network size (Fig. 8). There-
fore, the current development of the Internet shows properties of unlimited spatial
growth. Indeed, current maps still show sparsely populated countries to which the
network can expand (Yook et al., 2002, Fig. 1). In order to determine the exact
growth mechanisms, it would be interesting to investigate if new nodes form at
dense geographical regions, that is, within the network, or at sparse regions at the
network borders.
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Figure 8: Evolution of the Internet. Clustering coefficient C(N) and density de-
pending on the size of the AS-network. a, After an increase from 1997 to 1998 the
clustering coefficient remained constant. b, Density of the network was decreasing
with network size.

Networks grow in time and space. New cities and roads are constantly build.
During development, brain areas and new fibers are established. Therefore, data
about nodes and edges in the traffic system, the Internet, or the neural system
should be available for different times and therefore network sizes. If the connec-
tion density is decreasing with increasing network size, an unlimited network can
be assumed. I would not be surprised, however, if the growth of many real-world
networks would be found limited by borders.

3.2 Case study: cortical connectivity networks

Here, I analyze cortical networks of the cat and the macaque monkey. I will
investigate whether properties of these networks can result from spatial growth.
First, I will test whether spatial growth limits are necessary to generate networks
that are similar to cortical networks.

12



3.2.1 The role of borders for development

The connectivity networks of cat and macaque are compared with generated spa-
tial growth networks under the limited (border) as well as the virtually unlimited
condition. The parameter β was not changed, therefore, the density and clustering
coefficient differed between bordered and unlimited case. Both for the cat (Tab.
1) and the macaque (Tab. 2), limited growth could yield similar network proper-
ties of clustering coefficient and ASP, but the virtually unlimited condition led to
larger ASP (almost a factor of 2) and decreased clustering coefficient (about 2/3
of the original value).

It appears to be impossible to generate a high density as in the cat network
and low ASP’s as for cat and macaque network without borders. In fact, the ASP
for the unlimited networks is much higher than for comparable random networks
(ASP 2.8) excluding them from being small-world networks. It appears that small-
world networks, indeed, only occur in small (limited) and not in infinite network
spaces.

Table 1 Cat brain connectivity network and artificially generated networks. Clus-
tering coefficient cl, density d, average shortest path ASP and the maximum de-
gree of the resulting network are shown.

cl d ASP max. deg.
Cat55 0.55 0.3 1.82 31
border (α=5) 0.5 0.34 1.7 29
unlimited (α=200) 0.3 0.08 3.9 10

Table 2 Macaque brain connectivity network and artificially generated networks.
Clustering coefficient cl, density d, average shortest path ASP and the maximum
degree of the resulting network are shown.

cl d ASP max. deg.
Macaque73 0.46 0.16 2.2 39
border (α=8) 0.4 0.17 2.2 23
unlimited (α=200) 0.3 0.07 4.1 12

3.2.2 Total wiring length in cortical and simulated networks

I compared the wiring length of networks generated with our model in three di-
mensions with the wiring length of cortical systems connectivity in one hemisphere
of the macaque monkey.

For the macaque cortical network as well as comparable generated networks
(length scaled to account for different embedding space), the total length of all
connections was comparable (macaque: 32,364 mm; spatial growth simulation:
36,562 mm).

I note that networks generated by spatial growth show optimal component
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placement (Cherniak, 1995), in that reordering node positions leads to an increase
in total wiring length. In contrast to previous approaches to yield optimal wiring,
such as the vector mechanics model (Cherniak et al., 1999), spatial growth does
not need a posteriori optimization. In favoring nearby nodes for connection estab-
lishment during each individual step, our greedy spatial growth algorithm leads
to the global property of optimal component placement.

3.2.3 Multiple clusters

Within the aforementioned algorithm multiple cluster can occur. When a new node
faraway from the existing network does survive, candidate nodes in its vicinity are
likely to establish a connection to such a pioneer node. However, the probability
that a node distant to the existing network can survive, that is, establishes at least
one long-distance connection to the existing network, is still low. Therefore, it can
not be guaranteed that such a node occurs during development and that multiple
clusters arise. Furthermore, there is no control over the size of occurring clusters.
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Figure 9: a, Temporal dependence Ptemp of the projection establishment depend-
ing on the time and the type of the node. Relative time was normalized in that 0
stands for the beginning of the development and 1 for the end of network growth.
The three seed nodes had different time windows which were partially overlap-
ping. b, 2D projection of node positions. The color represents the time window
corresponding to one of the three seed nodes (+).

Therefore, I introduced a different factor that can ensure the occurrence of
multiple clusters: time windows for development. In addition, time windows have
been found during cortical development (Rakic, 2002). The formation of many
cortical areas overlaps in time but ends at different time points with highly dif-
ferentiated sensory areas (e.g., area 17) finishing last. Based on this finding, we
explored a wiring rule by which network nodes were most likely to be connected
if they developed during the same time window.
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I used the following algorithm for growth depending on distance as well as
time windows (cf. Fig. 9a). First, three seed nodes were placed at spatially
distant locations (cf. Fig. 9b). New nodes were placed randomly in space. The
time window of the new node was the same as that of the nearest seed node as it
was assumed to originate from this node. Second, the new node u established a
connection with an existing node v with probability P (u, v) = Ptemp(u)∗Ptemp(v)∗
Pdist(u, v). Third, if no connections were established, the node was removed from
the network.

a                                           b

Figure 10: a, Timed adjacency matrix. b, Clustered adjacency matrix
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Figure 11: a, Whereas most nodes had fewer than 30 (incoming or outgoing) con-
nections, also highly connected nodes did exist. b, Distribution of ’fiber’ lengths
in the generated networks. Long-distance connections also occurred.

The timed adjacency matrix shows the development of connections over time
(Fig. 10a). Different colors represent the time-window of the nodes. The re-
ordered matrix represents the same network in such a way that nodes with similar
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connectivity were placed nearby in the adjacency matrix (Fig. 10b). The re-
sulting network exhibited both long-distance connections and highly connected
nodes (Fig. 11). Using time windows generated defined clusters depending on the
number of different time windows that govern development. In addition to the
number of clusters, the size of clusters could be varied changing the width of the
corresponding time window.

In conclusion, spatial growth and time windows can represent various global
network properties as well as the general cluster architecture. Although having
similar general properties, the time window approach remains preliminary. More
information about cortical time windows and the positions of clusters in the cortex
has to be included in order to compare the simulation results with the existing
cortical network.

4 Discussion

I have proposed a different kind of spatial-growth mechanism, incorporating both
limited and virtually unlimited growth, that can produce a variety of metric real-
world networks. The metric is not limited to Euclidean space as in the discussed
examples, but may also use measures of similarity to define the link probability
e.g., social relations (Watts et al., 2002).

Spatial limits seem to occur in biological networks, as the skull limits neural
growth at the network border and in the cell different reaction compartments
(mitochondria, ER, cell core) and distant positions of proteins in the membranes
limit the interaction of molecules. Furthermore, it has been shown, that the spatial
separation of molecule interaction is critical in the early chemical evolution of
metabolic pathways (Szabó et al., 2002).

Also in artificial networks such as the Internet, and transportation networks
the spatial distance limits edge formation. Moreover, borders can exist, as under-
sea connections are much more expansive (and therefore unlikely) than overland
connections with the same distance. These geographic borders like sea, moun-
tains, deserts and so on can limit network growth resulting in a higher clustering
coefficient and density of the network and might be the reason for small-world
properties.

In contrast to previously studied spatial graphs (Watts, 1999), networks gen-
erated by our model were always connected. Moreover, the approach was able
to generate small-world graphs, which is thought not to be possible in the spatial
graph model in which positions are chosen randomly before edge formation (Watts,
1999). Finally, the model was also able to produce scale-free networks with rela-
tively low maximum degree, similar to, for example, the German highway system.
A systematic evaluation of model parameter space was carried out at the specific
network size of 100 nodes, which was feasible computationally. It would be inter-
esting to also evaluate larger or smaller network sizes and to investigate for them,
if small-world networks can be generated in a larger range of parameters α and β.
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A model with three distinct classes of nodes and different time windows re-
sulted in three clusters in the wiring architecture. Therefore, multiple clusters
may arise from spatially distributed origins for spatial growth development as well
as different time windows for establishment of connections.

In conclusion, I have presented a network growth algorithm which is able to
yield networks with high correlation coefficient and low ASP as found in small-
world networks by using borders for network growth. Moreover, the clustering
coefficient remains independent from the network size as found e.g. for metabolic
networks (Ravasz et al., 2002). I was also able to show that scale-free spatial
networks can be generated without preferential attachment, only relying on the
distance between two nodes. The generated scale-free network was found similar
to the linear German highway systems and could be applied to other systems
which are scale-free and unclustered.
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